首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   400篇
  免费   56篇
  2021年   6篇
  2020年   5篇
  2019年   5篇
  2018年   5篇
  2017年   5篇
  2016年   7篇
  2015年   16篇
  2014年   14篇
  2013年   15篇
  2012年   29篇
  2011年   27篇
  2010年   19篇
  2009年   16篇
  2008年   12篇
  2007年   28篇
  2006年   25篇
  2005年   15篇
  2004年   17篇
  2003年   12篇
  2002年   8篇
  2001年   12篇
  2000年   15篇
  1999年   10篇
  1998年   12篇
  1997年   8篇
  1996年   3篇
  1995年   5篇
  1994年   4篇
  1993年   7篇
  1992年   2篇
  1991年   3篇
  1990年   3篇
  1989年   9篇
  1988年   16篇
  1987年   7篇
  1986年   2篇
  1985年   9篇
  1984年   4篇
  1983年   6篇
  1982年   3篇
  1980年   3篇
  1979年   7篇
  1978年   5篇
  1977年   3篇
  1954年   1篇
  1950年   1篇
  1944年   1篇
  1932年   1篇
  1903年   1篇
  1902年   1篇
排序方式: 共有456条查询结果,搜索用时 15 毫秒
71.
The mass spectrometry (MS) technology in clinical proteomics is very promising for discovery of new biomarkers for diseases management. To overcome the obstacles of data noises in MS analysis, we proposed a new approach of knowledge-integrated biomarker discovery using data from Major Adverse Cardiac Events (MACE) patients. We first built up a cardiovascular-related network based on protein information coming from protein annotations in Uniprot, protein-protein interaction (PPI), and signal transduction database. Distinct from the previous machine learning methods in MS data processing, we then used statistical methods to discover biomarkers in cardiovascular-related network. Through the tradeoff between known protein information and data noises in mass spectrometry data, we finally could firmly identify those high-confident biomarkers. Most importantly, aided by protein-protein interaction network, that is, cardiovascular-related network, we proposed a new type of biomarkers, that is, network biomarkers, composed of a set of proteins and the interactions among them. The candidate network biomarkers can classify the two groups of patients more accurately than current single ones without consideration of biological molecular interaction.  相似文献   
72.
73.
74.
Growing anaerobic microorganisms in phenotypic microarrays (PM) and 96-well microtiter plates is an emerging technology that allows high throughput survey of the growth and physiology and/or phenotype of cultivable microorganisms. For non-model bacteria, a method for phenotypic analysis is invaluable, not only to serve as a starting point for further evaluation, but also to provide a broad understanding of the physiology of an uncharacterized wild-type organism or the physiology/phenotype of a newly created mutant of that organism. Given recent advances in genetic characterization and targeted mutations to elucidate genetic networks and metabolic pathways, high-throughput methods for determining phenotypic differences are essential. Here we outline challenges presented in studying the physiology and phenotype of a sulfate-reducing anaerobic delta proteobacterium, Desulfovibrio vulgaris Hildenborough. Modifications of the commercially available OmniLog system (Hayward, CA) for experimental setup, and configuration, as well as considerations in PM data analysis are presented. Also highlighted here is data viewing software that enables users to view and compare multiple PM data sets. The PM method promises to be a valuable strategy in our systems biology approach to D. vulgaris studies and is readily applicable to other anaerobic and aerobic bacteria.  相似文献   
75.
76.
High density lipoprotein (HDL), the carrier of so-called “good” cholesterol, serves as the major athero-protective lipoprotein and has emerged as a key therapeutic target for cardiovascular disease. We applied small angle neutron scattering (SANS) with contrast variation and selective isotopic deuteration to the study of nascent HDL to obtain the low resolution structure in solution of the overall time-averaged conformation of apolipoprotein AI (apoA-I) versus the lipid (acyl chain) core of the particle. Remarkably, apoA-I is observed to possess an open helical shape that wraps around a central ellipsoidal lipid phase. Using the low resolution SANS shapes of the protein and lipid core as scaffolding, an all-atom computational model for the protein and lipid components of nascent HDL was developed by integrating complementary structural data from hydrogen/deuterium exchange mass spectrometry and previously published constraints from multiple biophysical techniques. Both SANS data and the new computational model, the double superhelix model, suggest an unexpected structural arrangement of protein and lipids of nascent HDL, an anti-parallel double superhelix wrapped around an ellipsoidal lipid phase. The protein and lipid organization in nascent HDL envisages a potential generalized mechanism for lipoprotein biogenesis and remodeling, biological processes critical to sterol and lipid transport, organismal energy metabolism, and innate immunity.  相似文献   
77.
The genome of Desulfovibrio vulgaris strain DePue, a sulfate-reducing Deltaproteobacterium isolated from heavy metal-impacted lake sediment, was completely sequenced and compared with the type strain D. vulgaris Hildenborough. The two genomes share a high degree of relatedness and synteny, but harbour distinct prophage and signatures of past phage encounters. In addition to a highly variable phage contribution, the genome of strain DePue contains a cluster of open-reading frames not found in strain Hildenborough coding for the production and export of a capsule exopolysaccharide, possibly of relevance to heavy metal resistance. Comparative whole-genome microarray analysis on four additional D. vulgaris strains established greater interstrain variation within regions associated with phage insertion and exopolysaccharide biosynthesis.  相似文献   
78.
79.
Environmental contamination with a variety of pollutants has prompted the development of effective bioremediation strategies. But how can these processes be best monitored and controlled? One avenue under investigation is the development of stress response systems as tools for effective and general process control. Although the microbial stress response has been the subject of intensive laboratory investigation, the environmental reflection of the laboratory response to specific stresses has been little explored. However, it is only within an environmental context, in which microorganisms are constantly exposed to multiple changing environmental stresses, that there will be full understanding of microbial adaptive resiliency. Knowledge of the stress response in the environment will facilitate the control of bioremediation and other processes mediated by complex microbial communities.  相似文献   
80.

Background

Microbial communities in aquatic environments are spatially and temporally dynamic due to environmental fluctuations and varied external input sources. A large percentage of the urban watersheds in the United States are affected by fecal pollution, including human pathogens, thus warranting comprehensive monitoring.

Methodology/Principal Findings

Using a high-density microarray (PhyloChip), we examined water column bacterial community DNA extracted from two connecting urban watersheds, elucidating variable and stable bacterial subpopulations over a 3-day period and community composition profiles that were distinct to fecal and non-fecal sources. Two approaches were used for indication of fecal influence. The first approach utilized similarity of 503 operational taxonomic units (OTUs) common to all fecal samples analyzed in this study with the watershed samples as an index of fecal pollution. A majority of the 503 OTUs were found in the phyla Firmicutes, Proteobacteria, Bacteroidetes, and Actinobacteria. The second approach incorporated relative richness of 4 bacterial classes (Bacilli, Bacteroidetes, Clostridia and α-proteobacteria) found to have the highest variance in fecal and non-fecal samples. The ratio of these 4 classes (BBC∶A) from the watershed samples demonstrated a trend where bacterial communities from gut and sewage sources had higher ratios than from sources not impacted by fecal material. This trend was also observed in the 124 bacterial communities from previously published and unpublished sequencing or PhyloChip- analyzed studies.

Conclusions/Significance

This study provided a detailed characterization of bacterial community variability during dry weather across a 3-day period in two urban watersheds. The comparative analysis of watershed community composition resulted in alternative community-based indicators that could be useful for assessing ecosystem health.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号