首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   905篇
  免费   213篇
  2021年   13篇
  2020年   7篇
  2019年   9篇
  2018年   7篇
  2017年   9篇
  2016年   22篇
  2015年   42篇
  2014年   31篇
  2013年   41篇
  2012年   46篇
  2011年   39篇
  2010年   33篇
  2009年   37篇
  2008年   35篇
  2007年   42篇
  2006年   27篇
  2005年   30篇
  2004年   30篇
  2003年   28篇
  2002年   28篇
  2001年   32篇
  2000年   38篇
  1999年   28篇
  1998年   26篇
  1997年   27篇
  1996年   23篇
  1995年   27篇
  1994年   13篇
  1993年   14篇
  1992年   16篇
  1991年   19篇
  1990年   17篇
  1989年   19篇
  1988年   16篇
  1987年   12篇
  1986年   17篇
  1985年   17篇
  1984年   17篇
  1983年   8篇
  1982年   12篇
  1981年   7篇
  1980年   10篇
  1979年   12篇
  1978年   10篇
  1977年   12篇
  1976年   11篇
  1975年   9篇
  1974年   9篇
  1973年   7篇
  1972年   14篇
排序方式: 共有1118条查询结果,搜索用时 15 毫秒
61.
The identification of the H3K4 trimethylase, PRDM9, as the gene responsible for recombination hotspot localization has provided considerable insight into the mechanisms by which recombination is initiated in mammals. However, uniquely amongst mammals, canids appear to lack a functional version of PRDM9 and may therefore provide a model for understanding recombination that occurs in the absence of PRDM9, and thus how PRDM9 functions to shape the recombination landscape. We have constructed a fine-scale genetic map from patterns of linkage disequilibrium assessed using high-throughput sequence data from 51 free-ranging dogs, Canis lupus familiaris. While broad-scale properties of recombination appear similar to other mammalian species, our fine-scale estimates indicate that canine highly elevated recombination rates are observed in the vicinity of CpG rich regions including gene promoter regions, but show little association with H3K4 trimethylation marks identified in spermatocytes. By comparison to genomic data from the Andean fox, Lycalopex culpaeus, we show that biased gene conversion is a plausible mechanism by which the high CpG content of the dog genome could have occurred.  相似文献   
62.
63.
In the Maritime Antarctic and High Arctic, soil microhabitat temperatures throughout the year typically range between ?10 and +5 °C. However, on occasion, they can exceed 20 °C, and these instances are likely to increase and intensify as a result of climate warming. Remaining active under both cool and warm conditions is therefore important for polar terrestrial invertebrates if they are to forage, reproduce and maximise their fitness. In the current study, lower and upper thermal activity thresholds were investigated in the polar Collembola, Megaphorura arctica and Cryptopygus antarcticus, and the mite, Alaskozetes antarcticus. Specifically, the effect of acclimation on these traits was explored. Sub-zero activity was exhibited in all three species, at temperatures as low as ?4.6 °C in A. antarcticus. At high temperatures, all three species had capacity for activity above 30 °C and were most active at 25 °C. This indicates a comparable spread of temperatures across which activity can occur to that seen in temperate and tropical species, but with the activity window shifted towards lower temperatures. In all three species following one month acclimation at ?2 °C, chill coma (=the temperature at which movement and activity cease) and the critical thermal minimum (=low temperature at which coordination is no longer shown) occurred at lower temperatures than for individuals maintained at +4 °C (except for the CTmin of M. arctica). Individuals acclimated at +9 °C conversely showed little change in their chill coma or CTmin. A similar trend was demonstrated for the heat coma and critical thermal maximum (CTmax) of all species. Following one month at ?2 °C, the heat coma and CTmax were reduced as compared with +4 °C reared individuals, whereas the heat coma and CTmax of individuals acclimated at +9 °C showed little adjustment. The data obtained suggest these invertebrates are able to take maximum advantage of the short growing season and have some capacity, in spite of limited plasticity at high temperatures, to cope with climate change.  相似文献   
64.
65.
66.
Head and neck squamous cell carcinoma (HNSCC) is a frequently fatal heterogeneous disease. Beyond the role of human papilloma virus (HPV), no validated molecular characterization of the disease has been established. Using an integrated genomic analysis and validation methodology we confirm four molecular classes of HNSCC (basal, mesenchymal, atypical, and classical) consistent with signatures established for squamous carcinoma of the lung, including deregulation of the KEAP1/NFE2L2 oxidative stress pathway, differential utilization of the lineage markers SOX2 and TP63, and preference for the oncogenes PIK3CA and EGFR. For potential clinical use the signatures are complimentary to classification by HPV infection status as well as the putative high risk marker CCND1 copy number gain. A molecular etiology for the subtypes is suggested by statistically significant chromosomal gains and losses and differential cell of origin expression patterns. Model systems representative of each of the four subtypes are also presented.  相似文献   
67.
Somatic mutation analysis of melanoma has been performed at the single gene level extensively over the past several decades. This has provided considerable insight into the critical pathways controlling melanoma initiation and progression. During the last 5 yr, next‐generation sequencing (NGS) has enabled even more comprehensive mutational screening at the level of multigene panels, exomes and genomes. These studies have uncovered many new and unexpected players in melanoma development. The recent landmark study from The Cancer Genome Atlas (TCGA) consortium describing the genomic architecture of 333 cutaneous melanomas provides the largest and broadest analysis to date on the somatic aberrations underlying melanoma genesis. It thus seems timely to review the mutational landscape of melanoma and highlight the key genes and cellular pathways that appear to drive this cancer.  相似文献   
68.
Peptidylarginine deiminases (PADs) post-translationally convert arginine into neutral citrulline residues. Our past work shows that PADs are expressed in the canine and murine mammary glands; however, the mechanisms regulating PAD expression and the function of citrullination in the normal mammary gland are unclear. Therefore, the first objective herein was to investigate regulation of PAD expression in mammary epithelial cells. We first examined PAD levels in CID-9 cells, which were derived from the mammary gland of mid-pregnant mice. PAD3 expression is significantly higher than all other PAD isoforms and mediates protein citrullination in CID-9 cells. We next hypothesized that prolactin regulates PAD3 expression. To test this, CID-9 cells were stimulated with 5 μg/mL of prolactin for 48 hours which significantly increases PAD3 mRNA and protein expression. Use of a JAK2 inhibitor and a dominant negative (DN)-STAT5 adenovirus indicate that prolactin stimulation of PAD3 expression is mediated by the JAK2/STAT5 signaling pathway in CID-9 cells. In addition, the human PAD3 gene promoter is prolactin responsive in CID-9 cells. Our second objective was to investigate the expression and activity of PAD3 in the lactating mouse mammary gland. PAD3 expression in the mammary gland is highest on lactation day 9 and coincident with citrullinated proteins such as histones. Use of the PAD3 specific inhibitor, Cl4-amidine, indicates that PAD3, in part, can citrullinate proteins in L9 mammary glands. Collectively, our results show that upregulation of PAD3 is mediated by prolactin induction of the JAK2/STAT5 signaling pathway, and that PAD3 appears to citrullinate proteins during lactation.  相似文献   
69.
Late‐onset retinal degeneration (L‐ORD) is an autosomal dominant macular degeneration characterized by the formation of sub‐retinal pigment epithelium (RPE) deposits and neuroretinal atrophy. L‐ORD results from mutations in the C1q‐tumor necrosis factor‐5 protein (CTRP5), encoded by the CTRP5/C1QTNF5 gene. To understand the mechanism underlying L‐ORD pathology, we used a human cDNA library yeast two‐hybrid screen to identify interacting partners of CTRP5. Additionally, we analyzed the Bruch's membrane/choroid (BM‐Ch) from wild‐type (Wt), heterozygous S163R Ctrp5 mutation knock‐in (Ctrp5S163R/wt), and homozygous knock‐in (Ctrp5S163R/S163R) mice using mass spectrometry. Both approaches showed an association between CTRP5 and HTRA1 via its C‐terminal PDZ‐binding motif, stimulation of the HTRA1 protease activity by CTRP5, and CTRP5 serving as an HTRA1 substrate. The S163R‐CTRP5 protein also binds to HTRA1 but is resistant to HTRA1‐mediated cleavage. Immunohistochemistry and proteomic analysis showed significant accumulation of CTRP5 and HTRA1 in BM‐Ch of Ctrp5S163R/S163R and Ctrp5S163R/wt mice compared with Wt. Additional extracellular matrix (ECM) components that are HTRA1 substrates also accumulated in these mice. These results implicate HTRA1 and its interaction with CTRP5 in L‐ORD pathology.  相似文献   
70.
Approximately 1%–2% of cutaneous melanoma (CM) is classified as strongly familial. We sought to investigate unexplained CM predisposition in families negative for the known susceptibility genes using next‐generation sequencing of affected individuals. Segregation of germline variants of interest within families was assessed by Sanger sequencing. Several heterozygous variants in oculocutaneous albinism (OCA) genes: TYR, OCA2, TYRP1 and SLC45A2, were present in our CM cohort. OCA is a group of autosomal recessive genetic disorders, resulting in pigmentation defects of the eyes, hair and skin. Missense variants classified as pathogenic for OCA were present in multiple families and some fully segregated with CM. The functionally compromised TYR p.T373K variant was present in three unrelated families. In OCA2, known pathogenic variants: p.V443I and p.N489D, were present in three families and one family, respectively. We identified a likely pathogenic SLC45A2 frameshift variant that fully segregated with CM in a family of four cases. Another four‐case family harboured cosegregating variants (p.A24T and p.R153C) of uncertain functional significance in TYRP1. We conclude that rare, heterozygous variants in OCA genes confer moderate risk for CM.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号