首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   907篇
  免费   212篇
  1119篇
  2021年   13篇
  2020年   8篇
  2019年   9篇
  2018年   7篇
  2017年   10篇
  2016年   21篇
  2015年   42篇
  2014年   30篇
  2013年   40篇
  2012年   47篇
  2011年   40篇
  2010年   35篇
  2009年   43篇
  2008年   39篇
  2007年   42篇
  2006年   28篇
  2005年   33篇
  2004年   31篇
  2003年   27篇
  2002年   32篇
  2001年   34篇
  2000年   39篇
  1999年   29篇
  1998年   20篇
  1997年   26篇
  1996年   19篇
  1995年   24篇
  1994年   12篇
  1993年   12篇
  1992年   14篇
  1991年   19篇
  1990年   17篇
  1989年   17篇
  1988年   15篇
  1987年   12篇
  1986年   16篇
  1985年   18篇
  1984年   17篇
  1983年   7篇
  1982年   11篇
  1981年   7篇
  1980年   10篇
  1979年   12篇
  1978年   10篇
  1977年   11篇
  1976年   10篇
  1975年   9篇
  1974年   10篇
  1973年   7篇
  1972年   14篇
排序方式: 共有1119条查询结果,搜索用时 15 毫秒
981.
A ubiquitous early step in infection of man and animals by enteric bacterial pathogens like Salmonella, Shigella and enteropathogenic Escherichia coli (EPEC) is the translocation of virulence effector proteins into mammalian cells via specialized type III secretion systems (TTSSs). Translocated effectors subvert the host cytoskeleton and stimulate signalling to promote bacterial internalization or survival. Target cell plasma membrane cholesterol is central to pathogen-host cross-talk, but the precise nature of its critical contribution remains unknown. Using in vitro cholesterol-binding assays, we demonstrate that Salmonella (SipB) and Shigella (IpaB) TTSS translocon components bind cholesterol with high affinity. Direct visualization of cell-associated fluorescently labelled SipB and parallel immunogold transmission electron microscopy revealed that cholesterol levels limit both the amount and distribution of plasma membrane-integrated translocon. Correspondingly, cholesterol depletion blocked effector translocation into cultured mammalian cells by not only the related Salmonella and Shigella TTSSs, but also the more divergent EPEC system. The data reveal that cholesterol-dependent association of the bacterial TTSS translocon with the target cell plasma membrane is essential for translocon activation and effector delivery into mammalian cells.  相似文献   
982.
Efforts to understand and engineer cell behavior in mechanically soft environments frequently employ two-dimensional cell culture substrates consisting of thin hydrogel layers with low elastic modulus supported on rigid substrates to facilitate culturing, imaging, and analysis. Here we characterize how an elastic creasing instability of the gel surface may occur for the most widely used soft cell culture substrate, polyacrylamide hydrogels, and show that stem cells respond to and change their behavior due to these surface features. The regions of stability and corresponding achievable ranges of modulus are elucidated in terms of the monomer and cross-linker concentrations, providing guidance for the synthesis of both smooth and creased soft cell substrates for basic and applied cell engineering efforts.  相似文献   
983.
Squalene synthase catalyzes the biosynthesis of squalene, a key cholesterol precursor, through a reductive dimerization of two farnesyl diphosphate (FPP) molecules. The reaction is unique when compared with those of other FPP-utilizing enzymes and proceeds in two distinct steps, both of which involve the formation of carbocationic reaction intermediates. Because FPP is located at the final branch point in the isoprenoid biosynthesis pathway, its conversion to squalene through the action of squalene synthase represents the first committed step in the formation of cholesterol, making it an attractive target for therapeutic intervention. We have determined, for the first time, the crystal structures of recombinant human squalene synthase complexed with several different inhibitors. The structure shows that SQS is folded as a single domain, with a large channel in the middle of one face. The active sites of the two half-reactions catalyzed by the enzyme are located in the central channel, which is lined on both sides by conserved aspartate and arginine residues, which are known from mutagenesis experiments to be involved in FPP binding. One end of this channel is exposed to solvent, whereas the other end leads to a completely enclosed pocket surrounded by conserved hydrophobic residues. These observations, along with mutagenesis data identifying residues that affect substrate binding and activity, suggest that two molecules of FPP bind at one end of the channel, where the active center of the first half-reaction is located, and then the stable reaction intermediate moves into the deep pocket, where it is sequestered from solvent and the second half-reaction occurs. Five alpha helices surrounding the active center are structurally homologous to the active core in the three other isoprenoid biosynthetic enzymes whose crystal structures are known, even though there is no detectable sequence homology.  相似文献   
984.
Eukaryotic DNA is packaged into chromatin, which regulates genome activities such as telomere maintenance. This study focuses on the interactions of a myb/SANT DNA-binding domain from the telomere-binding protein, TRF2, with reconstituted telomeric nucleosomal array fibers. Biophysical characteristics of the factor-bound nucleosomal arrays were determined by analytical agarose gel electrophoresis (AAGE) and single molecules were visualized by atomic force microscopy (AFM). The TRF2 DNA-binding domain (TRF2 DBD) neutralized more negative charge on the surface of nucleosomal arrays than histone-free DNA. Binding of TRF2 DBD at lower concentrations increased the radius and conformational flexibility, suggesting a distortion of the fiber structure. Additional loading of TRF2 DBD onto the nucleosomal arrays reduced the flexibility and strongly blocked access of micrococcal nuclease as contour lengths shortened, consistent with formation of a unique, more compact higher-order structure. Mirroring the structural results, TRF2 DBD stimulated a strand invasion-like reaction, associated with telomeric t-loops, at lower concentrations while inhibiting the reaction at higher concentrations. Full-length TRF2 was even more effective at stimulating this reaction. The TRF2 DBD had less effect on histone-free DNA structure and did not stimulate the t-loop reaction with this substrate, highlighting the influence of chromatin structure on the activities of DNA-binding proteins.  相似文献   
985.
986.
There is currently renewed interest in assessing the feasibility of the sterile insect technique (SIT) to control African malaria vectors in designated areas. The SIT relies on the sterilization of males before mass release, with sterilization currently being achieved through the use of ionizing radiation. This paper reviews previous work on radiation sterilization of Anopheles mosquitoes. In general, the pupal stage was irradiated due to ease of handling compared to the adult stage. The dose-response curve between the induced sterility and log (dose) was shown to be sigmoid, and there was a marked species difference in radiation sensitivity. Mating competitiveness studies have generally been performed under laboratory conditions. The competitiveness of males irradiated at high doses was relatively poor, but with increasing ratios of sterile males, egg hatch could be lowered effectively. Males irradiated as pupae had a lower competitiveness compared to males irradiated as adults, but the use of partially-sterilizing doses has not been studied extensively. Methods to reduce somatic damage during the irradiation process as well as the use of other agents or techniques to induce sterility are discussed. It is concluded that the optimal radiation dose chosen for insects that are to be released during an SIT programme should ensure a balance between induced sterility of males and their field competitiveness, with competitiveness being determined under (semi-) field conditions. Self-contained 60Co research irradiators remain the most practical irradiators but these are likely to be replaced in the future by a new generation of high output X ray irradiators.  相似文献   
987.
988.
Eighty-seven proteolytic psychrotrophic micro-organisms were isolated from 11 bulk milk supplies of two Queensland factories from different climatic regions, before and after storage at 4°C for 7 d. These isolates together with 15 reference strains formed the basis of a numerical taxonomic study involving 81 attributes. All but six isolates were pseudomonads. The strains clustered into nine groups, of which one group consisted of four yeasts. One group, containing 39 isolates, was designated as Pseudomonas fluorescens biovar 1; three groups, containing 27 isolates, as Ps. fluorescens biovar 5; and one group, containing 10 isolates, as Ps. putida biovar A. This study showed that the proteolytic psychrotrophic microflora of the 11 milks supplying the two factories was substantially different and that the proteolytic flora of 7 d refrigerated milk could not be estimated by examining the flora before storage.  相似文献   
989.
L J Hayward  R H Brown  Jr    S C Cannon 《Biophysical journal》1997,72(3):1204-1219
Several heritable forms of myotonia and hyperkalemic periodic paralysis (HyperPP) are caused by missense mutations in the alpha subunit of the skeletal muscle Na channel (SkM1). These mutations impair fast inactivation or shift activation toward hyperpolarized potentials, inducing persistent Na currents that may cause muscle depolarization, myotonia, and onset of weakness. It has been proposed that the aberrant Na current and resulting weakness will be sustained only if Na channel slow inactivation is also impaired. We therefore measured slow inactivation for wild-type and five mutant Na channels constructed in the rat skeletal muscle isoform (rSkM1) and expressed in HEK cells. Two common HyperPP mutations (T698M in domain II-S5 and M1585V in IV-S6) had defective slow inactivation. This defect reduced use-dependent inhibition of Na currents elicited during 50-Hz stimulation. A rare HyperPP mutation (M1353V in IV-S1) and mutations within the domain III-IV linker that cause myotonia (G1299E) or myotonia plus weakness (T1306M) did not impair slow inactivation. We also observed that slow inactivation of wild-type rSkM1 was incomplete; therefore it is possible that stable membrane depolarization and subsequent muscle weakness may be caused solely by defects in fast inactivation or activation. Model simulations showed that abnormal slow inactivation, although not required for expression of a paralytic phenotype, may accentuate muscle membrane depolarization, paralysis, and sensitivity to hyperkalemia.  相似文献   
990.
We used cloned BamHI fragments from Epstein-Barr virus strain B95-8 [EBV(B95-8)]DNA to obtain detailed restriction maps of the region of the genome adjacent to the large internal repeat cluster. These maps together with the results of hybridization experiments using a 3.1-kilobase repeat probe defined more precisely the location of the injection between the internal repeat cluster and the flanking unique-sequence DNA. On one side (UL), the repeat sequences extended 600 +/- 80 base pairs (bp) into BamHI-Y; on the other side (US), they extended 1,300 +/- 200 bp into BamHI-C. Therefore, EBV(B95-8) DNA contained a nonintegral number of 3.1-kilobase repeat units, namely, 12.6 copies. The mapping studies also revealed a second series of internal tandem repetitions in EBV(B95-8) DNA located within the BamHI-H fragment. This cluster comprised 11 copies of a 135-bp repeat unit which contained a single site for the NotI restriction endonuclease. Hybridization to these cloned EBV(B95-8) fragments using total EBV(HR-1) DNA as probe indicated that the deletion in EBV(HR-1) removed all 3,000 bp of unique-sequence DNA which lay between the large 3.1-kilobase and the small 135-bp repeat clusters. Thus, the deletion which destroyed the transforming ability in the EBV(HR-1) virus was bounded on either side by tandem repetitions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号