首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1115篇
  免费   131篇
  2022年   7篇
  2021年   10篇
  2018年   11篇
  2016年   15篇
  2015年   30篇
  2014年   38篇
  2013年   48篇
  2012年   67篇
  2011年   99篇
  2010年   30篇
  2009年   43篇
  2008年   43篇
  2007年   41篇
  2006年   37篇
  2005年   35篇
  2004年   45篇
  2003年   23篇
  2002年   25篇
  2001年   31篇
  2000年   29篇
  1999年   21篇
  1998年   7篇
  1997年   11篇
  1996年   9篇
  1995年   11篇
  1994年   7篇
  1993年   9篇
  1992年   30篇
  1991年   15篇
  1990年   20篇
  1989年   20篇
  1988年   20篇
  1987年   18篇
  1986年   24篇
  1985年   28篇
  1984年   14篇
  1983年   19篇
  1982年   18篇
  1981年   8篇
  1980年   21篇
  1979年   28篇
  1978年   14篇
  1977年   14篇
  1974年   14篇
  1973年   17篇
  1972年   11篇
  1971年   9篇
  1970年   10篇
  1969年   10篇
  1968年   10篇
排序方式: 共有1246条查询结果,搜索用时 62 毫秒
41.
Genetic and biochemical consequences of thymidylate stress   总被引:8,自引:0,他引:8  
We have examined the genetic and biochemical consequences of thymidylate stress in haploid and diploid strains of the simple eukaryote Saccharomyces cerevisiae (Bakers' yeast). Previously we reported that inhibition of dTMP biosynthesis causes "thymineless death" and is highly recombinagenic, but apparently not mutagenic, at the nuclear level; however, it is mutagenic for mitochondria. Concurrent provision of dTMP abolishes these effects. Conversely, excess dTMP is highly mutagenic for nuclear genes. It is likely that DNA strand breaks are responsible for the recombinagenic effects of thymidylate deprivation; such breaks could be produced by reiterative uracil incorporation and excision in DNA repair patches. In our experiments, thymidylate stress was produced both by starving dTMP auxotrophs for the required nucleotide and also by blocking de novo synthesis of thymidylate by various antimetabolites. We found that the antifolate methotrexate is a potent inducer of mitotic recombination (both gene conversion and mitotic crossing-over). This suggests that the gene amplification associated with methotrexate resistance in mammalian cells could arise, in part, by unequal sister-chromatid exchange induced by thymidylate stress. In addition, several sulfa drugs, which impede de novo folate biosynthesis, also have considerable recombinagenic activity.  相似文献   
42.
43.
In an investigation of novel potential bile acid sequestrants, the affinities of the sodium salts of the glycine and taurine conjugates of naturally occurring bile acids (cholate, deoxycholate, chenodeoxycholate and lithocholate) for several cationic ammonium bile acid derivatives have been investigated by measurements of the extent to which the derivatives are able to precipitate the bile acids. This is roughly proportional to the lipophilicity of the interacting species. Thus, amino and ammonium derivatives of cholic acid do not precipitate taurocholate or glycocholate to any great extent, whereas ammonium derivatives of deoxycholate and lithocholate are much more effective. To complement the precipitation measurements, high resolution 13C-NMR has been applied to investigate the weaker interactions between the ammonium cholate derivative and glycocholate, glycodeoxycholate and glycochenodeoxycholate. Addition of either of the latter two bile acids to the cationic ammonium compound results in considerable broadening of the 13C resonances of both species, indicating the formation of relatively rigid structures. In addition, we have used T2 relaxation enhancement induced by spin-labelled fatty acids to examine the mechanism of interaction with bile acids of amphiphilic anions, which might compete with bile acids for sites on bile acid sequestrants. Low concentrations of 16-DOXY L-Stearate dramatically broaden the 13C-NMR resonances of deoxycholate carbons 19, 18 and 7 in particular, while 5-DOXY L-Stearate exerts much less specific effects. These results have been incorporated into a snapshot model of bile acid-fatty acid interactions.  相似文献   
44.
Partition coefficients in poly(ethylene glycol)/dextran aqueous two-phase systems are reported for mixed-casein and its components, alpha, beta and kappa casein. Rates of casein proteolysis by alpha-chymotrypsin and by trypsin are reported in single-phase and aqueous two-phase reactor systems. The advantages resulting from selective partitioning of substrates, enzymes, and products are examined in terms of relative volumetric reaction rates.  相似文献   
45.
The early changes in hepatic metallothionein (MT) and plasma zinc (Zn), copper (Cu), and iron (Fe) were investigated during the induction of adjuvant (AJ) arthritis in rats in conjunction with cyclosporin (CSA) treatment. Plasma Zn decreased after AJ injection (60% of control values at 8 h), and this was associated with a 4.5-fold increase in hepatic MT at 8 h. Plasma Zn was lowest at 16 h (40% of control), whereas hepatic MT concentrations increased to a maximum of 20-fold at 16 h. Changes in plasma Fe paralleled those of Zn, whereas plasma Cu levels were increased. Plasma metal and hepatic MT concentrations returned toward normal from d 1–7. At d 14, when marked paw swelling was apparent, hepatic MT and plasma Cu were again increased and plasma Zn decreased. Administration of CsA decreased MT induction in rats injected with AJ and also caused a marked recovery in plasma Zn and Fe levels. These changes were small but significant even in the early stages (up to 24 h) after AJ injection and were followed by a sustained improvement in all parameters, corresponding to the nonappearance of clinical arthropathy in CsA-treated rats. TNF-α and IL-6 production by peritoneal macrophages isolated from AJ-injected rats was significantly decreased by CsA treatment at d 7 and 14. The inhibition of hepatic MT induction during acute and chronic inflammation by cyclosporin emphasizes the role of the immune system in altered metal homeostasis in inflammation.  相似文献   
46.
A genetic component in the etiology of Alzheimer disease (AD) has been supported by indirect evidence for several years, with autosomal dominant inheritance with age-dependent penetrance being suggested to explain the familial aggregation of affecteds. St. George Hyslop et al. reported linkage of familial AD (FAD) in four early-onset families (mean age at onset [M] less than 50 years). Subsequent studies have been inconsistent in their results; Goate et al. also reported positive lod scores. However, both Pericak-Vance et al.'s study of a series of mainly late-onset FAD families (M greater than 60 years) and Schellenberg et al.'s study failed to confirm linkage to chromosome 21 (CH21). These various studies suggest the possibility of genetic heterogeneity, with some families linked to CH21 and others unlocalized. Recently, St. George Hyslop et al. extended their analysis to include additional families. The extended analyses supported their earlier finding of linkage to CH21, while showing strong evidence of heterogeneity between early-onset (M less than 65 years) and late-onset (M greater than 60 years) FAD families. Because our families did not show linkage to CH21, we undertook a genomic search for an additional locus for FAD. Because of both the confounding factor of late age at onset of FAD and the lack of clear evidence of Mendelian transmission in some of our families, we employed the affected-pedigree-member (APM) method of linkage analysis as an initial screen for possible linkage. Using this method, we identified two regions suggesting linkage: the proximal long arm of chromosome 19 (CH19) and the CH21 region of FAD linkage reported by St. George Hyslop et al. Application of standard likelihood (LOD score) analysis to these data support the possibility of an FAD gene locate on CH19, particularly in the late-onset FAD families. These data further suggest genetic heterogeneity and delineate this region of CH19 as an area needing additional investigation in FAD.  相似文献   
47.
Summary The binding of the anionic fluorescent probe 1-anilino-8-naphthalene-sulfonate (ANS) was used to estimate the surface potential of fragmented sarcoplasmic reticulum (SR) derived from rabbit skeletal muscle. The method is based on the observation that ANS is an obligatory anion whose equilibrium constant for binding membranes is proportional to the electrostatic function of membrane surface potential, exp(e0/kT, where 0 is the membrane surface potential,e is the electronic charge, andkT has its usual meaning. The potential measured is characteristic of the ANS bindings of phosphatidylcholine head groups and is about one-third as large as the average surface potential predicted by the Gouy-Chapman theory. At physiological ionic strength the surface potentials, measured by ANS, referred to as the aqueous phase bathing the surface, were in the range –10 to –15 mV. This was observed for the outside and inside surfaces of the Ca2+-ATPase-rich fraction of theSR and for both surfaces of theSR fraction rich in acidic Ca2+ binding proteins. The inside and outside surfaces were differentiated on the basis of ANS binding kinetics observed in stopped-flow rapid mixing experiments. A mechanism by which changes in Ca2+ concentration could give rise to an electrostatic potential across the membrane and possibly result in changes in Ca2+ permeability.The dependence of the surface potential on the monovalent ion concentration in the medium was used together with the Gouy-Chapman theory to determine the lower limits for the surface charge density for the inside and outside surfaces of the two types ofSR. Values for the Ca2+-ATPase richSR fraction were between 2.9×103 and 3.8×103 esu/cm2, (0.96×10–6 and 1.26×10–6 C/cm2) with no appreciable transmembrane asymmetry. A small amount of asymmetry was observed in the values for the inside and outside surfaces of the fraction rich in acidic binding proteins which were ca. 6.6×103 and ca. 2.2×103 esu/cm2 (2.2×10–6 and 0.73×10–6 C/cm). The values could be accounted for by the known composition of negatively-charged phospholipids in theSR. The acidic Ca2+ binding proteins were shown to make at most a small contribution to the surface charge, indicating that their charge must be located at least several tens of Å from the membrane surface. The experiments gave evidence for a Donnan effect on the K+ distribution in the fraction rich in acidic binding proteins. This could be accounted for by the known concentration of acidic binding proteins in thisSR fraction.The equilibrium constant for ANS was shown to be more sensitive to changes in the divalent cation concentration than to changes in the monovalent cation concentration, as predicted by the Gouy-Chapman theory. Use of these findings together with the stopped-flow rapid mixing techniques constitutes a method for rapid and continuous monitoring of changes in ion concentrations in theSR lumen.  相似文献   
48.
49.
Divalent cations induce the aggregation of chromaffin granule ghosts (CG membranes) at millimolar concentrations. Monovalent cations produce the same effect at 100-fold higher concentrations. The kinetics of the dimerization phase were followed by light-scattering changes observed in stopped-flow rapid mixing experiments. The rate constant for Ca2+-induced dimerization (kapp) is 0.86-1.0 x 10(9) M-1sec-1, based on the "molar" vesicle concentration. This value is close to the values predicted by theory for the case of diffusion-controlled reaction (7.02 x 10(9) M-1sec-1), indicating that there is no energy barrier to dimerization. Arrhenius plots between 10 degrees and 42 degrees C support this; the activation energy observed, +4.4 Kcal, is close to the value (4.6-4.8 Kcal) predicted for diffusion control according to theory. Artificial vesicles prepared from CG lipids were also found to have cation-induced aggregation, but the rates (values of kapp) were less than 1/100 as large as those with native CG membranes. Also, significant differences were found with respect to cation specificity. It is concluded that the slow rates are due to the low probability that the segments of membrane which approach will be matched in polar head group composition and disposition. Thus large numbers of approaches are necessary before matched segments come into aposition. The salient features of the chromaffin granule membrane aggregation mechanism are as follows: (a) In the absence of cations capable of shielding and binding, the membranes are held apart by electrostatic repulsion of their negatively charged surfaces. (b) The divalent and monovalent cation effects on aggregation are due to their ability to shield these charges, allowing a closer approach of the membrane surfaces. (c) The major determinants of the aggregation rates of CG membranes are proteins which protrude from the (phospholipid) surface of the membrane and serve as points of primary contact. Transmembrane contact between these proteins does not require full neutralization of the surface charge and surface potential arising from the negatively charged phospholipids. (d) After contact between proteins is established, the interaction between membranes can be strengthened through transmembrane hydrogen bonding of phosphatidyl ethanolamine polar head groups, divalent cation-mediated salt bridging, and segregation of phosphatidylcholine out of the region of contact.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号