首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   337篇
  免费   39篇
  2023年   4篇
  2022年   8篇
  2021年   15篇
  2020年   17篇
  2019年   12篇
  2018年   18篇
  2017年   11篇
  2016年   15篇
  2015年   29篇
  2014年   31篇
  2013年   29篇
  2012年   36篇
  2011年   33篇
  2010年   14篇
  2009年   13篇
  2008年   28篇
  2007年   15篇
  2006年   21篇
  2005年   5篇
  2004年   9篇
  2003年   1篇
  2002年   9篇
  2001年   1篇
  1993年   1篇
  1989年   1篇
排序方式: 共有376条查询结果,搜索用时 15 毫秒
31.

Background

Distinguishing human neural stem/progenitor cell (huNSPC) populations that will predominantly generate neurons from those that produce glia is currently hampered by a lack of sufficient cell type-specific surface markers predictive of fate potential. This limits investigation of lineage-biased progenitors and their potential use as therapeutic agents. A live-cell biophysical and label-free measure of fate potential would solve this problem by obviating the need for specific cell surface markers.

Methodology/Principal Findings

We used dielectrophoresis (DEP) to analyze the biophysical, specifically electrophysiological, properties of cortical human and mouse NSPCs that vary in differentiation potential. Our data demonstrate that the electrophysiological property membrane capacitance inversely correlates with the neurogenic potential of NSPCs. Furthermore, as huNSPCs are continually passaged they decrease neuron generation and increase membrane capacitance, confirming that this parameter dynamically predicts and negatively correlates with neurogenic potential. In contrast, differences in membrane conductance between NSPCs do not consistently correlate with the ability of the cells to generate neurons. DEP crossover frequency, which is a quantitative measure of cell behavior in DEP, directly correlates with neuron generation of NSPCs, indicating a potential mechanism to separate stem cells biased to particular differentiated cell fates.

Conclusions/Significance

We show here that whole cell membrane capacitance, but not membrane conductance, reflects and predicts the neurogenic potential of human and mouse NSPCs. Stem cell biophysical characteristics therefore provide a completely novel and quantitative measure of stem cell fate potential and a label-free means to identify neuron- or glial-biased progenitors.  相似文献   
32.
33.
Plasmodiophora brassicae is an intracellular pathogen that infects plants in the Brassicaceae family. Although an important pathogen group, information on the genomic makeup of the plasmodiophorids is almost completely lacking. We performed suppression subtractive hybridization (SSH) between RNA from P. brassicae-infected and uninfected Arabidopsis tissue, then screened 232 clones from the resulting SSH library. In addition, we used an oligo-capping procedure to screen 305 full-length cDNA clones from the infected tissue. A total of 76 new P. brassicae gene sequences were identified, the majority of which were extended to full length at the 5' end by the use of RACE amplification. Many of the unisequences were predicted to contain signal peptides for ER translocation. Although we located few sequences in total, these markedly increase available data from the plasmodiophorids, and provide new opportunities to examine plasmodiophorid biology. Our study also points towards the best methods for future plasmodiophorid gene discovery.  相似文献   
34.
HLA diversity is seen as a major challenge to CTL vaccines against HIV. One current approach focuses on "promiscuous" epitopes, presented by multiple HLA alleles from within the same HLA supertype. However, the effectiveness of such supertype vaccines depends upon the functional equivalence of CTL targeting a particular epitope, irrespective of the restricting HLA. In this study, we describe the promiscuous HIV-specific CTL epitopes presented by alleles within the B7 supertype. Substantial differences were observed in the ability of CTL to select for escape mutation when targeting the same epitope but restricted by different HLA. This observation was common to all six promiscuous B7 epitopes identified. Moreover, with one exception, there were no significant differences in the frequency, magnitude, or immunodominance of the CTL responses restricted by different HLA alleles to explain these discrepancies. This suggests that the unique peptide/MHC complexes generated by even closely related HLA induce CTL responses that are qualitatively different. This hypothesis is supported by additional differences observed between CTL targeting identical epitopes but restricted by different HLA: first, the occurrence of distinct, HLA-specific escape mutation; second, the recruitment of distinct TCR repertoires by particular peptide/MHC complexes; and, third, significant differences in the functional avidity of CTL. Taken together, these data indicate that significant functional differences exist between CTL targeting identical epitopes but restricted by different, albeit closely related HLA. These findings are of relevance to vaccine approaches that seek to exploit HLA supertypes to overcome the problem of HLA diversity.  相似文献   
35.
Inositol 1,3,4,5,6-pentakisphosphate 2-kinase (IP(5) 2-K) catalyzes the synthesis of inositol 1,2,3,4,5,6-hexakisphosphate from ATP and IP(5). Inositol 1,2,3,4,5,6-hexakisphosphate is implicated in crucial processes such as mRNA export, DNA editing, and phosphorus storage in plants. We previously solved the first structure of an IP(5) 2-K, which shed light on aspects of substrate recognition. However, failure of IP(5) 2-K to crystallize in the absence of inositide prompted us to study putative conformational changes upon substrate binding. We have made mutations to residues on a region of the protein that produces a clasp over the active site. A W129A mutant allowed us to capture IP(5) 2-K in its different conformations by crystallography. Thus, the IP(5) 2-K apo-form structure displays an open conformation, whereas the nucleotide-bound form shows a half-closed conformation, in contrast to the inositide-bound form obtained previously in a closed conformation. Both nucleotide and inositide binding produce large conformational changes that can be understood as two rigid domain movements, although local changes were also observed. Changes in intrinsic fluorescence upon nucleotide and inositide binding are in agreement with the crystallographic findings. Our work suggests that the clasp might be involved in enzyme kinetics, with the N-terminal lobe being essential for inositide binding and subsequent conformational changes. We also show how IP(5) 2-K discriminates between inositol 1,3,4,5-tetrakisphosphate and 3,4,5,6-tetrakisphosphate enantiomers and that substrate preference can be manipulated by Arg(130) mutation. Altogether, these results provide a framework for rational design of specific inhibitors with potential applications as biological tools for in vivo studies, which could assist in the identification of novel roles for IP(5) 2-K in mammals.  相似文献   
36.
Dna2 is an essential helicase/nuclease that is postulated to cleave long DNA flaps that escape FEN1 activity during Okazaki fragment (OF) maturation in yeast. We previously demonstrated that the human Dna2 orthologue (hDna2) localizes to the nucleus and contributes to genomic stability. Here we investigated the role hDna2 plays in DNA replication. We show that Dna2 associates with the replisome protein And-1 in a cell cycle-dependent manner. Depletion of hDna2 resulted in S/G(2) phase-specific DNA damage as evidenced by increased γ-H2AX, replication protein A foci, and Chk1 kinase phosphorylation, a readout for activation of the ATR-mediated S phase checkpoint. In addition, we observed reduced origin firing in hDna2-depleted cells consistent with Chk1 activation. We next examined the impact of hDna2 on OF maturation and replication fork progression in human cells. As expected, FEN1 depletion led to a significant reduction in OF maturation. Strikingly, the reduction in OF maturation had no impact on replication fork progression, indicating that fork movement is not tightly coupled to lagging strand maturation. Analysis of hDna2-depleted cells failed to reveal a defect in OF maturation or replication fork progression. Prior work in yeast demonstrated that ectopic expression of FEN1 rescues Dna2 defects. In contrast, we found that FEN1 expression in hDna2-depleted cells failed to rescue genomic instability. These findings suggest that the genomic instability observed in hDna2-depleted cells does not arise from defective OF maturation and that hDna2 plays a role in DNA replication that is distinct from FEN1 and OF maturation.  相似文献   
37.
The bone marrow represents the most common source from which to isolate mesenchymal stem cells (MSCs). MSCs are capable of differentiating into tissues of the three primary lineages and have the potential to enhance repair in damaged organs through the principals of regenerative medicine. Given the ease with which MSCs may be isolated from different species the aim of this study was to isolate and characterize putative bone marrow derived MSCs from the spiny mouse, Acomys cahirinus. MSCs were isolated from the spiny mouse in a traditional manner, and based on plastic adherence, morphology, colony forming unit-fibroblast assays and functional assessment (adipogenic, osteogenic and chondrogenic differentiation potential) a population of putative mesenchymal stem cells from the compact bone of the spiny mouse have been isolated and characterized. Such methodological approaches overcome the lack of species-specific antibodies for the spiny mouse and could be employed for other species where the cost of generating species-specific antibodies is not warranted.  相似文献   
38.
The opportunistic pathogen Penicillium marneffei displays a temperature-dependent dimorphic switching program with saprophytic hyphal growth at 25 °C and yeast growth at 37 °C. The areA gene of P. marneffei has been isolated and found to be required for the utilisation of nonpreferred nitrogen sources during both growth programs of P. marneffei, albeit to differing degrees. Based on this functional characterisation and high degree of sequence conservation with other fungal GATA factors, P. marneffei areA represents an orthologue of Aspergillus nidulans areA and Neurospora crassa NIT2. Based on this study it is proposed that AreA is likely to contribute to the pathogenicity of P. marneffei by facilitating growth in the host environment and regulating the expression of potential virulence factors such as extracellular proteases.  相似文献   
39.
With the proliferation of species-tree methods, empiricists now have to confront the daunting task of method choice. Such decisions might be made based on theoretical considerations alone. However, the messiness of real data means that theoretical ideals may not hold in practice (e.g., with convergence of complicated MCMC algorithms and computational times that limit analyses to small data sets). On the other hand, simplifying assumptions made by some approaches may compromise the accuracy of species-tree estimates. Here we examine the purported tradeoff between accuracy and computational simplicity for species-tree analysis, focusing on the different ways the approaches treat gene-tree uncertainty. By considering a diversity of species trees, as well as different sampling designs and total sampling efforts, we not only compare the accuracy of species-tree estimates across methods, but we also partition the variation in accuracy across factors to identify their relative importance. This analysis shows that although the method of analysis affects accuracy, other factors - namely, the history of species divergence and aspects of the sampling design - have a larger impact. Despite a full modeling of gene tree uncertainty (e.g., using a Bayesian framework), species-tree estimates may not be accurate, particularly for recent diversification histories. Nevertheless, we demonstrate how factors within the control of the empirical investigator (e.g., decisions about sampling) improve the accuracy of species tree estimates, and more so than the method of analysis. Lastly, with much of the attention on species-tree analyses focused on the discord among loci arising from the coalescent, this work also highlights a previously overlooked key determinant of species-tree accuracy for recent divergences - the level of genetic variation at a locus, which has important implications for improving species-tree estimates in practice.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号