首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8642篇
  免费   862篇
  国内免费   3篇
  2023年   29篇
  2022年   67篇
  2021年   162篇
  2020年   97篇
  2019年   117篇
  2018年   144篇
  2017年   156篇
  2016年   213篇
  2015年   361篇
  2014年   402篇
  2013年   520篇
  2012年   631篇
  2011年   676篇
  2010年   371篇
  2009年   357篇
  2008年   554篇
  2007年   470篇
  2006年   453篇
  2005年   452篇
  2004年   435篇
  2003年   391篇
  2002年   376篇
  2001年   118篇
  2000年   103篇
  1999年   141篇
  1998年   115篇
  1997年   89篇
  1996年   68篇
  1995年   48篇
  1994年   54篇
  1993年   57篇
  1992年   90篇
  1991年   62篇
  1990年   75篇
  1989年   82篇
  1988年   61篇
  1987年   66篇
  1986年   44篇
  1985年   62篇
  1984年   35篇
  1983年   38篇
  1982年   41篇
  1981年   56篇
  1980年   49篇
  1979年   39篇
  1978年   36篇
  1977年   34篇
  1976年   36篇
  1974年   32篇
  1971年   26篇
排序方式: 共有9507条查询结果,搜索用时 31 毫秒
991.
Evidence that the root of the tree of life is not within the Archaea   总被引:2,自引:0,他引:2  
The Archaea occupy uncommon and extreme habitats around the world. They manufacture unusual compounds, utilize novel metabolic pathways, and contain many unique genes. Many suspect, due to their novel properties, that the root of the tree of life may be within the Archaea, although there is little direct evidence for this root. Here, using gene insertions and deletions found within protein synthesis factors present in all prokaryotes and eukaryotes, we present statistically significant evidence that the root of life is outside the Archaea.  相似文献   
992.
993.
The melanocortin 1 receptor (Mc1r) plays a central role in cutaneous biology, but is expressed at very low levels by a small fraction of cells in the skin. In humans, loss-of-function MC1R mutations cause fair skin, freckling, red hair, and increased predisposition to melanoma; in mice, Mc1r loss-of-function is responsible for the recessive yellow mutation, associated with pheomelanic hair and a decreased number of epidermal melanocytes. To better understand how Mc1r signaling affects different cutaneous phenotypes, we examined large-scale patterns of gene expression in different skin components (whole epidermal sheets, basal epidermal cells and whole skins) of neonatal (P2.5) normal and recessive yellow mice, starting with a 26K mouse cDNA microarray. From c. 17 000 genes whose levels could be accurately measured in neonatal skin, we identified 883, 2097 and 552 genes that were uniquely expressed in the suprabasal epidermis, basal epidermis and dermis, respectively; specific biologic roles could be assigned for each class. Comparison of normal and recessive yellow mice revealed 69 differentially expressed genes, of which the majority had not been previously implicated in Mc1r signaling. Surprisingly, many of the Mc1r-dependent genes are expressed in cells other than melanocytes, even though Mc1r expression in the skin is confined almost exclusively to epidermal melanocytes. These results reveal new targets for Mc1r signaling, and point to a previously unappreciated role for a Mc1r-dependent paracrine effect of melanocytes on other components of the skin.  相似文献   
994.
Transient receptor potential vanilloid (TRPV) channels are polymodal detectors of multiple environmental factors, including temperature, pH, and pressure. Inflammatory mediators enhance TRPV function through multiple signaling pathways. The lipoxygenase and epoxygenase products of arachidonic acid (AA) metabolism have been shown to directly activate TRPV1 and TRPV4, respectively. TRPV3 is a thermosensitive channel with an intermediate temperature threshold of 31-39 degrees C. We have previously shown that TRPV3 is activated by 2-aminoethoxydiphenyl borate (2APB). Here we show that AA and other unsaturated fatty acids directly potentiate 2APB-induced responses of TRPV3 expressed in HEK293 cells, Xenopus oocytes, and mouse keratinocytes. The AA-induced potentiation is observed in intracellular Ca2+ measurement, whole-cell and two-electrode voltage clamp studies, as well as single channel recordings of excised inside-out and outside-out patches. The fatty acid-induced potentiation is not blocked by inhibitors of protein kinase C and thus differs from that induced by the kinase. The potentiation does not require AA metabolism but is rather mimicked by non-metabolizable analogs of AA. These results suggest a novel mechanism regulating the TRPV3 response to inflammation, which differs from TRPV1 and TRPV4, and involves a direct action of free fatty acids on the channel.  相似文献   
995.
Myostatin, a transforming growth factor-beta (TGF-beta) super-family member, has been well characterized as a negative regulator of muscle growth and development. Myostatin has been implicated in several forms of muscle wasting including the severe cachexia observed as a result of conditions such as AIDS and liver cirrhosis. Here we show that Myostatin induces cachexia by a mechanism independent of NF-kappaB. Myostatin treatment resulted in a reduction in both myotube number and size in vitro, as well as a loss in body mass in vivo. Furthermore, the expression of the myogenic genes myoD and pax3 was reduced, while NF-kappaB (the p65 subunit) localization and expression remained unchanged. In addition, promoter analysis has confirmed Myostatin inhibition of myoD and pax3. An increase in the expression of genes involved in ubiquitin-mediated proteolysis is observed during many forms of muscle wasting. Hence we analyzed the effect of Myostatin treatment on proteolytic gene expression. The ubiquitin associated genes atrogin-1, MuRF-1, and E214k were upregulated following Myostatin treatment. We analyzed how Myostatin may be signaling to induce cachexia. Myostatin signaling reversed the IGF-1/PI3K/AKT hypertrophy pathway by inhibiting AKT phosphorylation thereby increasing the levels of active FoxO1, allowing for increased expression of atrophy-related genes. Therefore, our results suggest that Myostatin induces cachexia through an NF-kappaB-independent mechanism. Furthermore, increased Myostatin levels appear to antagonize hypertrophy signaling through regulation of the AKT-FoxO1 pathway.  相似文献   
996.
Eukaryotic pyrimidine 5'-nucleotidase type 1 (P5N-1) catalyzes dephosphorylation of pyrimidine 5'-mononucleotides. Deficiency of P5N-1 activity in red blood cells results in nonspherocytic hemolytic anemia. The enzyme deficiency is either familial or can be acquired through lead poisoning. We present the crystal structure of mouse P5N-1 refined to 2.35 A resolution. The mouse P5N-1 has a 92% sequence identity to its human counterpart. The structure revealed that P5N-1 adopts a fold similar to enzymes of the haloacid dehydrogenase superfamily. The active site of this enzyme is structurally highly similar to those of phosphoserine phosphatases. We propose a catalytic mechanism for P5N-1 that is also similar to that of phosphoserine phosphatases and provide experimental evidence for the mechanism in the form of structures of several reaction cycle states, including: 1) P5N-1 with bound Mg(II) at 2.25 A, 2) phosphoenzyme intermediate analog at 2.30 A, 3) product-transition complex analog at 2.35 A, and 4) product complex at 2.1A resolution with phosphate bound in the active site. Furthermore the structure of Pb(II)-inhibited P5N-1 (at 2.35 A) revealed that Pb(II) binds within the active site in a way that compromises function of the cationic cavity, which is required for the recognition and binding of the phosphate group of nucleotides.  相似文献   
997.
G protein-coupled receptors (GPCRs) are the most common targets of drug action. Allosteric modulators bind to the seven-transmembrane domain of family 3 GPCRs and offer enhanced selectivity over orthosteric ligands that bind to the large extracellular N terminus. We characterize a novel negative allosteric modulator of the human Ca(2+) receptor, Compound 1, that retains activity against the E837A mutant that lacks a response to previously described positive and negative modulators. A related compound, JKJ05, acts as a negative allosteric modulator on the wild type receptor but as a positive modulator on the E837A mutant receptor. This positive modulation critically depends on the primary amine in JKJ05, which appears to interact with acidic residue Glu(767) in our model of the seven-transmembrane domain of the receptor. Our results suggest the need for identification of possible genetic variation in the allosteric site of therapeutically targeted GPCRs.  相似文献   
998.
Regulation of integrin activity by MIA   总被引:3,自引:0,他引:3  
MIA (melanoma inhibitory activity) has been identified as a small protein secreted from malignant melanoma cells, which interacts with extracellular matrix proteins including fibronectin. Here, we show that MIA negatively regulates the activity of the mitogen-activated protein kinase pathway in malignant melanoma. Using far Western blotting and co-immunoprecipitation we searched for MIA-binding cell surface proteins. We found that MIA interacts with integrin alpha4beta1 and alpha5beta1, leading to down-regulation of integrin activity and reduction of mitogen-activated protein kinase signaling. These findings also suggest that MIA may play a role in tumor progression and the spread of malignant melanomas via mediating detachment of cells from extracellular matrix molecules by modulating integrin activity. Inhibiting MIA functions in vivo may therefore provide a novel therapeutic strategy for metastatic melanoma disease.  相似文献   
999.
Allergen-induced contact hypersensitivity (CHS) is a T cell-mediated delayed-type immune response which has been considered to be primarily mediated by CD8+ T cytotoxic type I (Tc1) cells. IFN-gamma, the prototype Tc1 (Th1) cytokine, has been implicated as the primary inflammatory cytokine for CHS. In this study, we demonstrate that neutralization of IL-17 rather than IFN-gamma suppresses the elicitation of CHS. The suppression does not result from inhibition of the proliferation of allergen-activated T cells. Allergen sensitization induces the development of distinct CD8+ T cell subpopulations that produce IFN-gamma or IL-17. Although CD8+ IL-17-producing cells are stimulated by IL-23, they are inhibited by IL-12, a prototypical stimulator of IFN-gamma-producing Tc1 cells. This indicates that CD8+ IL-17-producing cells are distinct from Tc1 cells and are important in effector functions at the elicitation of CHS. These studies provide insights into a novel mechanism for CHS.  相似文献   
1000.
The loss of blood-brain barrier (BBB) integrity in CNS inflammatory responses triggered by infection and autoimmunity has generally been associated with the development of neurological signs. In the present study, we demonstrate that the clearance of the attenuated rabies virus CVS-F3 from the CNS is an exception; increased BBB permeability and CNS inflammation occurs in the absence of neurological sequelae. We speculate that regionalization of the CNS inflammatory response contributes to its lack of pathogenicity. Despite virus replication and the expression of several chemokines and IL-6 in both regions being similar, the up-regulation of MIP-1beta, TNF-alpha, IFN-gamma, and ICAM-1 and the loss of BBB integrity was more extensive in the cerebellum than in the cerebral cortex. The accumulation of CD4- and CD19-positive cells was higher in the cerebellum than the cerebral cortex. Elevated CD19 levels were paralleled by kappa-L chain expression levels. The timing of BBB permeability changes, kappa-L chain expression in CNS tissues, and Ab production in the periphery suggest that the in situ production of virus-neutralizing Ab may be more important in virus clearance than the infiltration of circulating Ab. The data indicate that, with the possible exception of CD8 T cells, the effectors of rabies virus clearance are more commonly targeted to the cerebellum. This is likely the result of differences in the capacity of the tissues of the cerebellum and cerebral cortex to mediate the events required for BBB permeability changes and cell invasion during virus infection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号