首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   337篇
  免费   39篇
  2023年   4篇
  2022年   8篇
  2021年   15篇
  2020年   17篇
  2019年   12篇
  2018年   18篇
  2017年   11篇
  2016年   15篇
  2015年   29篇
  2014年   31篇
  2013年   29篇
  2012年   36篇
  2011年   33篇
  2010年   14篇
  2009年   13篇
  2008年   28篇
  2007年   15篇
  2006年   21篇
  2005年   5篇
  2004年   9篇
  2003年   1篇
  2002年   9篇
  2001年   1篇
  1993年   1篇
  1989年   1篇
排序方式: 共有376条查询结果,搜索用时 640 毫秒
141.
Immune defense is temperature dependent in cold‐blooded vertebrates (CBVs) and thus directly impacted by global warming. We examined whether immunity and within‐host infectious disease progression are altered in CBVs under realistic climate warming in a seasonal mid‐latitude setting. Going further, we also examined how large thermal effects are in relation to the effects of other environmental variation in such a setting (critical to our ability to project infectious disease dynamics from thermal relationships alone). We employed the three‐spined stickleback and three ecologically relevant parasite infections as a “wild” model. To generate a realistic climatic warming scenario we used naturalistic outdoors mesocosms with precise temperature control. We also conducted laboratory experiments to estimate thermal effects on immunity and within‐host infectious disease progression under controlled conditions. As experimental readouts we measured disease progression for the parasites and expression in 14 immune‐associated genes (providing insight into immunophenotypic responses). Our mesocosm experiment demonstrated significant perturbation due to modest warming (+2°C), altering the magnitude and phenology of disease. Our laboratory experiments demonstrated substantial thermal effects. Prevailing thermal effects were more important than lagged thermal effects and disease progression increased or decreased in severity with increasing temperature in an infection‐specific way. Combining laboratory‐determined thermal effects with our mesocosm data, we used inverse modeling to partition seasonal variation in Saprolegnia disease progression into a thermal effect and a latent immunocompetence effect (driven by nonthermal environmental variation and correlating with immune gene expression). The immunocompetence effect was large, accounting for at least as much variation in Saprolegnia disease as the thermal effect. This suggests that managers of CBV populations in variable environments may not be able to reliably project infectious disease risk from thermal data alone. Nevertheless, such projections would be improved by primarily considering prevailing thermal effects in the case of within‐host disease and by incorporating validated measures of immunocompetence.  相似文献   
142.
143.
144.
Identification of a new sialic acid-binding protein in Helicobacter pylori   总被引:2,自引:0,他引:2  
A novel sialic acid-specific lectin has been isolated from Helicobacter pylori lysate using fetuin-agarose affinity chromatography followed by cleavage of the alpha(2,3) and alpha(2,6) linkages of sialic acids using neuraminidase. The protein had a molecular weight of 17.5 kDa on sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE) and was identified by matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry to be protein of unknown function with gene number HP0721. Recombinant HP0721 was shown to bind to fetuin-agarose and sialic acid-containing glycosphingolipids on thin-layer plates suggesting this protein may represent another sialic acid-specific adhesin of H. pylori. A H. pylori mutant defective for HP0721 was generated and its ability to bind to human AGS cells assayed.  相似文献   
145.
146.
We have identified truncating mutations in the human DLG3 (neuroendocrine dlg) gene in 4 of 329 families with moderate to severe X-linked mental retardation. DLG3 encodes synapse-associated protein 102 (SAP102), a member of the membrane-associated guanylate kinase protein family. Neuronal SAP102 is expressed during early brain development and is localized to the postsynaptic density of excitatory synapses. It is composed of three amino-terminal PDZ domains, an src homology domain, and a carboxyl-terminal guanylate kinase domain. The PDZ domains interact directly with the NR2 subunits of the NMDA glutamate receptor and with other proteins responsible for NMDA receptor localization, immobilization, and signaling. The mutations identified in this study all introduce premature stop codons within or before the third PDZ domain, and it is likely that this impairs the ability of SAP102 to interact with the NMDA receptor and/or other proteins involved in downstream NMDA receptor signaling pathways. NMDA receptors have been implicated in the induction of certain forms of synaptic plasticity, such as long-term potentiation and long-term depression, and these changes in synaptic efficacy have been proposed as neural mechanisms underlying memory and learning. The disruption of NMDA receptor targeting or signaling, as a result of the loss of SAP102, may lead to altered synaptic plasticity and may explain the intellectual impairment observed in individuals with DLG3 mutations.  相似文献   
147.
148.
Plasmodium falciparum, which causes malaria, extensively remodels its human host cells, particularly erythrocytes. Remodelling is essential for parasite survival by helping to avoid host immunity and assisting in the uptake of plasma nutrients to fuel rapid growth. Host cell renovation is carried out by hundreds of parasite effector proteins that are exported into the erythrocyte across an enveloping parasitophorous vacuole membrane (PVM). The Plasmodium translocon for exported (PTEX) proteins is thought to span the PVM and provide a channel that unfolds and extrudes proteins across the PVM into the erythrocyte. We show that exported reporter proteins containing mouse dihydrofolate reductase domains that inducibly resist unfolding become trapped at the parasite surface partly colocalizing with PTEX. When cargo is trapped, loop‐like extensions appear at the PVM containing both trapped cargo and PTEX protein EXP2, but not additional components HSP101 and PTEX150. Following removal of the block‐inducing compound, export of reporter proteins only partly recovers possibly because much of the trapped cargo is spatially segregated in the loop regions away from PTEX. This suggests that parasites have the means to isolate unfoldable cargo proteins from PTEX‐containing export zones to avert disruption of protein export that would reduce parasite growth.   相似文献   
149.
Pongamia (Millettia pinnata) has been widely studied as a potential feedstock for biodiesel fuel, though little is known about its feasibility at a commercial level. Capital budgeting and cash flow analysis was conducted for a potential Pongamia plantation and crushing plant in Queensland, Australia. For annual seed yields ranging from 20 to 80 kg (in shell) per tree, the delivered cost of Pongamia oil was estimated to be between AUD $2.22 and AUD $0.64 per litre. The seed yield range of 20 to 80 kg per tree is roughly equivalent to between 7 and 29 t per hectare at a planting density of 357 trees per hectare. Major components of the delivered cost of (Pongamia) oil are the capital expenses of land acquisition, plantation establishment and the crushing plant construction. The major operational costs include mechanical harvesting; fertiliser; control of weed, pests and diseases; seed crushing; and freight of oil to a refinery. The cost items with the greatest volume sensitivity are the capital expenses, overheads (consisting mostly of salaries and wages of employees) and the expenses associated with harvesting and crushing operations. These costs could be significantly reduced if the seed yield could be increased. Several scenarios were tested to demonstrate the effect of seed yield and oil price on the profitability and cash flow of the Pongamia enterprise. At most plausible oil prices and seed yields, Pongamia oil is not expected to be economically viable.  相似文献   
150.
Dispersal plays a crucial role in many aspects of species' life histories, yet is often difficult to measure directly. This is particularly true for many insects, especially nocturnal species (e.g. moths) that cannot be easily observed under natural field conditions. Consequently, over the past five decades, laboratory tethered flight techniques have been developed as a means of measuring insect flight duration and speed. However, these previous designs have tended to focus on single species (typically migrant pests), and here we describe an improved apparatus that allows the study of flight ability in a wide range of insect body sizes and types. Obtaining dispersal information from a range of species is crucial for understanding insect population dynamics and range shifts. Our new laboratory tethered flight apparatus automatically records flight duration, speed, and distance of individual insects. The rotational tethered flight mill has very low friction and the arm to which flying insects are attached is extremely lightweight while remaining rigid and strong, permitting both small and large insects to be studied. The apparatus is compact and thus allows many individuals to be studied simultaneously under controlled laboratory conditions. We demonstrate the performance of the apparatus by using the mills to assess the flight capability of 24 species of British noctuid moths, ranging in size from 12–27 mm forewing length (~40–660 mg body mass). We validate the new technique by comparing our tethered flight data with existing information on dispersal ability of noctuids from the published literature and expert opinion. Values for tethered flight variables were in agreement with existing knowledge of dispersal ability in these species, supporting the use of this method to quantify dispersal in insects. Importantly, this new technology opens up the potential to investigate genetic and environmental factors affecting insect dispersal among a wide range of species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号