首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   246篇
  免费   21篇
  国内免费   1篇
  268篇
  2022年   3篇
  2021年   5篇
  2020年   2篇
  2018年   4篇
  2017年   2篇
  2016年   2篇
  2015年   6篇
  2014年   12篇
  2013年   12篇
  2012年   11篇
  2011年   10篇
  2010年   13篇
  2009年   11篇
  2008年   6篇
  2007年   11篇
  2006年   9篇
  2005年   10篇
  2004年   15篇
  2003年   11篇
  2002年   7篇
  2001年   5篇
  2000年   4篇
  1999年   8篇
  1998年   6篇
  1997年   2篇
  1996年   2篇
  1995年   3篇
  1994年   2篇
  1992年   2篇
  1991年   3篇
  1990年   2篇
  1989年   4篇
  1988年   4篇
  1987年   3篇
  1985年   3篇
  1983年   3篇
  1982年   4篇
  1978年   3篇
  1977年   3篇
  1976年   2篇
  1973年   7篇
  1972年   6篇
  1971年   1篇
  1970年   1篇
  1969年   3篇
  1968年   4篇
  1967年   2篇
  1966年   1篇
  1965年   4篇
  1945年   1篇
排序方式: 共有268条查询结果,搜索用时 15 毫秒
61.
The essential micronutrients Fe and Zn often limit plant growth but are toxic in excess. Arabidopsis thaliana ZINC-INDUCED FACILITATOR1 (ZIF1) is a vacuolar membrane major facilitator superfamily protein required for basal Zn tolerance. Here, we show that overexpression of ZIF1 enhances the partitioning into vacuoles of the low molecular mass metal chelator nicotianamine and leads to pronounced nicotianamine accumulation in roots, accompanied by vacuolar buildup of Zn. Heterologous ZIF1 protein localizes to vacuolar membranes and enhances nicotianamine contents of yeast cells engineered to synthesize nicotianamine, without complementing a Zn-hypersensitive mutant that additionally lacks vacuolar membrane Zn(2+)/H(+) antiport activity. Retention in roots of Zn, but not of Fe, is enhanced in ZIF1 overexpressors at the expense of the shoots. Furthermore, these lines exhibit impaired intercellular Fe movement in leaves and constitutive Fe deficiency symptoms, thus phenocopying nicotianamine biosynthesis mutants. Hence, perturbing the subcellular distribution of the chelator nicotianamine has profound, yet distinct, effects on Zn and Fe with respect to their subcellular and interorgan partitioning. The zif1 mutant is also hypersensitive to Fe deficiency, even in media lacking added Zn. Therefore, accurate levels of ZIF1 expression are critical for both Zn and Fe homeostasis. This will help to advance the biofortification of crops.  相似文献   
62.
Marrow mesenchymal stem cells are pluripotent progenitors that can differentiate into bone, cartilage, muscle, and fat cells. Wnt signaling has been implicated in regulating osteogenic differentiation of mesenchymal stem cells. Here, we analyzed the gene expression profile of mesenchymal stem cells that were stimulated with Wnt3A. Among the 220 genes whose expression was significantly changed by 2.5-fold, we found that three members of the CCN family, CCN1/Cyr61, CCN2/connective tissue growth factor (CTGF), and CCN5/WISP2, were among the most significantly up-regulated genes. We further investigated the role of CCN1/Cyr61 in Wnt3A-regulated osteogenic differentiation. We confirmed that CCN1/Cyr61 was up-regulated at the early stage of Wnt3A stimulation. Chromatin immunoprecipitation analysis indicates that CCN1/Cyr61 is a direct target of canonical Wnt/beta-catenin signaling. RNA interference-mediated knockdown of CCN1/Cyr61 expression diminished Wnt3A-induced osteogenic differentiation. Furthermore, exogenously expressed CCN1/Cyr61 was shown to effectively promote mesenchymal stem cell migration. These findings suggest that tightly regulated CCN1/Cyr61 expression may play an important role in Wnt3A-induced osteoblast differentiation of mesenchymal stem cells.  相似文献   
63.
Wnt/β‐catenin pathway plays an important role in regulating embryonic development. Hepatocytes differentiate from endoderm during development. Hepatic progenitor cells (HPCs) have been isolated from fetal liver and extrahepatic tissues. Most current studies in liver development and hepatic differentiation have been focused on Wnts, β‐catenin, and their receptors. Here, we sought to determine the role of Wnt antagonists in regulating hepatic differentiation of fetal liver‐derived HPCs. Using mouse liver tissues derived from embryonic day E12.5 to postnatal day (PD) 28, we found that 13 of the 19 Wnt genes and almost all of Wnt receptors/co‐receptors were expressed in most stages. However, Wnt antagonists SFRP2, SFRP3, and Dkk2 were only detected in the early stages. We established and characterized the reversible stable HPCs derived from E14.5 mouse fetal liver (HP14.5). HP14.5 cells were shown to express high levels of early liver progenitor cell markers, but low levels or none of late liver markers. HP14.5 cells were shown to differentiate into mature hepatocytes upon dexamethasone (Dex) stimulation. Dex‐induced late marker expression and albumin promoter activity in HP14.5 cells were inhibited by exogenous expression of SFRP3. Furthermore, Dex‐induced glycogen synthesis of PAS‐positive HP14.5 cells was significantly inhibited by SFRP3. Therefore, our results have demonstrated that the expression of Wnt antagonists decreases as hepatic differentiation progresses, suggesting that a balanced Wnt signaling may be critical during mouse liver development and hepatic differentiation. J. Cell. Biochem. 108: 295–303, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   
64.
Models of habitat preference are widely used to quantify animal–habitat relationships, to describe and predict differential space use by animals, and to identify habitat that is important to an animal (i.e. that is assumed to influence fitness). Quantifying habitat preference involves the statistical comparison of samples of habitat use and availability. Preference is therefore contingent upon both of these samples. The inferences that can be made from use versus availability designs are influenced by subjectivity in defining what is available to the animal, the problem of quantifying the accessibility of available resources and the framework in which preference is modelled. Here, we describe these issues, document the conditional nature of preference and establish the limits of inferences that can be drawn from these analyses. We argue that preference is not interpretable as reflecting the intrinsic behavioural motivations of the animal, that estimates of preference are not directly comparable among different samples of availability and that preference is not necessarily correlated with the value of habitat to the animal. We also suggest that preference is context-dependent and that functional responses in preference resulting from changing availability are expected. We conclude by describing advances in analytical methods that begin to resolve these issues.  相似文献   
65.
Mesenchymal stem cells (MSCs) are bone marrow stromal cells that can differentiate into multiple lineages. We previously demonstrated that BMP9 is one of the most potent BMPs to induce osteogenic differentiation of MSCs. BMP9 is one of the least studied BMPs. Whereas ALK1, ALK5, and/or endoglin have recently been reported as potential BMP9 type I receptors in endothelial cells, little is known about type I receptor involvement in BMP9-induced osteogenic differentiation in MSCs. Here, we conduct a comprehensive analysis of the functional role of seven type I receptors in BMP9-induced osteogenic signaling in MSCs. We have found that most of the seven type I receptors are expressed in MSCs. However, using dominant-negative mutants for the seven type I receptors, we demonstrate that only ALK1 and ALK2 mutants effectively inhibit BMP9-induced osteogenic differentiation in vitro and ectopic ossification in MSC implantation assays. Protein fragment complementation assays demonstrate that ALK1 and ALK2 directly interact with BMP9. Likewise, RNAi silencing of ALK1 and ALK2 expression inhibits BMP9-induced BMPR-Smad activity and osteogenic differentiation in MSCs both in vitro and in vivo. Therefore, our results strongly suggest that ALK1 and ALK2 may play an important role in mediating BMP9-induced osteogenic differentiation. These findings should further aid us in understanding the molecular mechanism through which BMP9 regulates osteogenic differentiation of MSCs.  相似文献   
66.
Rastegar F  Gao JL  Shenaq D  Luo Q  Shi Q  Kim SH  Jiang W  Wagner ER  Huang E  Gao Y  Shen J  Yang K  He BC  Chen L  Zuo GW  Luo J  Luo X  Bi Y  Liu X  Li M  Hu N  Wang L  Luther G  Luu HH  Haydon RC  He TC 《PloS one》2010,5(12):e14182

Background

Osteosarcoma is the most common primary malignancy of bone with poorly characterized molecular pathways important in its pathogenesis. Increasing evidence indicates that elevated lipid biosynthesis is a characteristic feature of cancer. We sought to investigate the role of lysophosphatidic acid acyltransferase β (LPAATβ, aka, AGPAT2) in regulating the proliferation and growth of human osteosarcoma cells. LPAATβ can generate phosphatidic acid, which plays a key role in lipid biosynthesis as well as in cell proliferation and survival. Although elevated expression of LPAATβ has been reported in several types of human tumors, the role of LPAATβ in osteosarcoma progression has yet to be elucidated.

Methodology/Principal Findings

Endogenous expression of LPAATβ in osteosarcoma cell lines is analyzed by using semi-quantitative PCR and immunohistochemical staining. Adenovirus-mediated overexpression of LPAATβ and silencing LPAATβ expression is employed to determine the effect of LPAATβ on osteosarcoma cell proliferation and migration in vitro and osteosarcoma tumor growth in vivo. We have found that expression of LPAATβ is readily detected in 8 of the 10 analyzed human osteosarcoma lines. Exogenous expression of LPAATβ promotes osteosarcoma cell proliferation and migration, while silencing LPAATβ expression inhibits these cellular characteristics. We further demonstrate that exogenous expression of LPAATβ effectively promotes tumor growth, while knockdown of LPAATβ expression inhibits tumor growth in an orthotopic xenograft model of human osteosarcoma.

Conclusions/Significance

Our results strongly suggest that LPAATβ expression may be associated with the aggressive phenotypes of human osteosarcoma and that LPAATβ may play an important role in regulating osteosarcoma cell proliferation and tumor growth. Thus, targeting LPAATβ may be exploited as a novel therapeutic strategy for the clinical management of osteosarcoma. This is especially attractive given the availability of selective pharmacological inhibitors.  相似文献   
67.
Enterocytozoon bieneusi is a microsporidian found in humans and other animals around the world. Investigations in some countries, such as the U.S., have indicated the importance of E. bieneusi as a zoonotic water‐ and food‐borne pathogen. However, there is scant epidemiological information on E. bieneusi in animals in many countries including Australia. Here, we conducted the first molecular epidemiological study of E. bieneusi in farmed cattle in Victoria, Australia, to assess whether these bovids are carriers of “zoonotic” genotypes of E. bieneusi. A total of 471 individual faecal samples were collected from calves of < 3 mo and of 3–9 mo of age. Genomic DNAs were extracted from individual faecal samples and then subjected to nested PCR‐based sequencing of the internal transcribed spacer (ITS) of nuclear ribosomal DNA to identify E. bieneusi and define genotypes. Enterocytozoon bieneusi was detected in 49 of the 471 samples (10.4%). An analysis of ITS sequence data revealed three known genotypes (BEB4, I, and J) and three novel genotypes (designated TAR_fc1 to TAR_fc3). Phylogenetic analysis showed that genotypes BEB4, I, J, TAR_fc1, and TAR_fc2 clustered with genotypes identified previously in humans, indicating that cattle are carriers of E. bieneusi with zoonotic potential.  相似文献   
68.
69.
Glial cells in (patho)physiology   总被引:1,自引:0,他引:1  
Neuroglial cells define brain homeostasis and mount defense against pathological insults. Astroglia regulate neurogenesis and development of brain circuits. In the adult brain, astrocytes enter into intimate dynamic relationship with neurons, especially at synaptic sites where they functionally form the tripartite synapse. At these sites, astrocytes regulate ion and neurotransmitter homeostasis, metabolically support neurons and monitor synaptic activity; one of the readouts of the latter manifests in astrocytic intracellular Ca(2+) signals. This form of astrocytic excitability can lead to release of chemical transmitters via Ca(2+) -dependent exocytosis. Once in the extracellular space, gliotransmitters can modulate synaptic plasticity and cause changes in behavior. Besides these physiological tasks, astrocytes are fundamental for progression and outcome of neurological diseases. In Alzheimer's disease, for example, astrocytes may contribute to the etiology of this disorder. Highly lethal glial-derived tumors use signaling trickery to coerce normal brain cells to assist tumor invasiveness. This review not only sheds new light on the brain operation in health and disease, but also points to many unknowns.  相似文献   
70.
Anthropogenic ocean acidification is likely to have negative effects on marine calcifying organisms, such as shelled pteropods, by promoting dissolution of aragonite shells. Study of shell dissolution requires an accurate and sensitive method for assessing shell damage. Shell dissolution was induced through incubations in CO2‐enriched seawater for 4 and 14 days. We describe a procedure that allows the level of dissolution to be assessed and classified into three main types: Type I with partial dissolution of the prismatic layer; Type II with exposure of underlying crossed‐lamellar layer, and Type III, where crossed‐lamellar layer shows signs of dissolution. Levels of dissolution showed a good correspondence to the incubation conditions, with the most severe damage found in specimens held for 14 days in undersaturated condition (Ω ~ 0.8). This methodology enables the response of small pelagic calcifiers to acidified conditions to be detected at an early stage, thus making pteropods a valuable bioindicator of future ocean acidification.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号