首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   97篇
  免费   3篇
  2022年   1篇
  2018年   3篇
  2016年   1篇
  2015年   2篇
  2014年   5篇
  2013年   5篇
  2012年   4篇
  2011年   8篇
  2010年   4篇
  2009年   4篇
  2008年   4篇
  2007年   4篇
  2006年   2篇
  2005年   2篇
  2004年   3篇
  2003年   8篇
  2002年   7篇
  2001年   2篇
  2000年   9篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   3篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1987年   1篇
  1985年   4篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
  1971年   1篇
  1968年   1篇
排序方式: 共有100条查询结果,搜索用时 140 毫秒
71.
Previous work with modulators of Ca2+ and pH has indicated that elevated levels of cytoplasmic Ca2+ and pH are required during the first 4-5 h of the dark period for successful floral induction in Pharbitis nil Chois cv. Violet. In the present study we further examined the effect of modulators of Ca2+ and pH by supplying them at various times prior to the inductive dark period. Peaks of inhibition by the Ca2+ chelator, EGTA, were observed in seedings treated 8, 18-and 34 h before the start of the dark period. When seedlings of slightly different ages (within one diurnal cycle) were treated with EGTA, maximum inhibition was always obtained in plants treated 8 h before the start of the dark period. Peaks of inhibition by the acidifying agents, salicylic acid and Na-propionate, were observed at -2 to -6 h and at -10 to - 14 h. Treatment with the alkalizing agent, trisodium citrate, enhanced the flowering response with maximum enhancement at -6 to -8 h and at - 18 to - 20 h. We hypothesize that treatment with modulators starts an oscillation in endogenous levels of Ca2+ and pH. The levels of Ca2+ and pH prevailing at the commencement of the inductive dark period will influence the ability of the plant to perceive or to respond to the photoperiodic induction.  相似文献   
72.
The antidiabetic drug metformin stimulates AMP-activated protein kinase (AMPK) activity in the liver and in skeletal muscle. To better understand the role of AMPK in the regulation of hepatic lipids, we studied the effect of metformin on AMPK and its downstream effector, acetyl-CoA carboxylase (ACC), as well as on lipid content in cultured human hepatoma HepG2 cells. Metformin increased Thr-172 phosphorylation of the alpha subunit of AMPK in a dose- and time-dependent manner. In parallel, phosphorylation of ACC at Ser-79 was increased, which was consistent with decreasing ACC activity. Intracellular triacylglycerol and cholesterol contents were also decreased. These effects of metformin were mimicked or completely abrogated by adenoviral-mediated expression of a constitutively active AMPKalpha or a kinase-inactive AMPKalpha, respectively. An insulin-resistant state was induced by exposing cells to 30 mm glucose as indicated by decreased phosphorylation of Akt and its downstream effector, glycogen synthase kinase 3alpha/beta. Under these conditions, the phosphorylation of AMPK and ACC was also decreased, and the level of hepatocellular triacylglycerols increased. The inhibition of AMPK and the accumulation of lipids caused by high glucose concentrations were prevented either by metformin or by expressing the constitutively active AMPKalpha. The kinase-inactive AMPKalpha increased lipid content and blocked the ability of metformin to decrease lipid accumulation caused by high glucose concentrations. Taken together, these results indicate that AMPKalpha negatively regulates ACC activity and hepatic lipid content. Inhibition of AMPK may contribute to lipid accumulation induced by high concentrations of glucose associated with insulin resistance. Metformin lowers hepatic lipid content by activating AMPK, thereby mediating beneficial effects in hyperglycemia and insulin resistance.  相似文献   
73.
The laser desorption/ionization (LDI) assisted by gold nanospheres, nanorods and nanostars has been investigated. Laser fluence thresholds for the appearance of cationized adducts of a polydispersed polyether standard (polyethylenglycol PEG600) have been determined at the near ultraviolet–visible–near infrared wavelengths delivered by a Nd:YAG laser (266, 355, 532, 1,064 nm). The results demonstrate the efficiency of surface plasmon excitation to assist laser desorption/ionizaton at laser wavelengths extending to the visible and near infrared, with advantages with respect to conventional LDI techniques using ultraviolet wavelengths. A close correlation is found between the optical absorbance of the nanoparticles and the LDI thresholds, although for the nanospheres plasmonic excitation in the visible appears to be more efficient than non-plasmonic excitation at shorter UV wavelengths. The recorded molecular weight distributions for the PEG600 standard show that the LDI process tends to be less efficient for the heavier components of the polymer mixture, presumably as a consequence of their stronger bonding to the nanoparticle substrate. The role of the coating agent of the nanoparticles in the observed LDI behavior is discussed.  相似文献   
74.
Summary The mechanism of plasma membrane turnover was investigated using the duckling salt gland as a model system. Feeding fresh water to saltstressed ducklings results in a decrease in the Na, K-ATPase in salt gland to nonstressed levels in about 7 days, as measured by ATP hydrolysis and 3H-ouabain binding. Electron micrographs reveal that this is accompanied by a decrease in plasma membrane infoldings on the basal and lateral borders of gland secretory cells. Simultaneously there is an increase in filamentous material and a rise in acid phosphatase and peptidase activities in these cells. Cytochemistry shows that the acid phosphatase activity is mostly associated with the basal or basolateral regions of secretory cells. These observations could indicate that the removal of plasma membrane components is accomplished by internalization and digestion within the secretory cells.  相似文献   
75.
76.
Selenomonas ruminantium produces a tuft of flagella near the midpoint of the cell body and swims by rotating the cell body along the cell's long axis. The flagellum is composed of a single kind of flagellin, which is heavily glycosylated. The hook length of S. ruminantium is almost double that of Salmonella.  相似文献   
77.
apoA-I plays important structural and functional roles in reverse cholesterol transport. We have described the molecular structure of the N-terminal domain, Δ(185-243) by X-ray crystallography. To understand the role of the C-terminal domain, constructs with sequential elongation of Δ(185-243), by increments of 11-residue sequence repeats were studied and compared with Δ(185-243) and WT apoA-I. Constructs up to residue 230 showed progressively decreased percent α-helix with similar numbers of helical residues, similar detergent and lipid binding affinity, and exposed hydrophobic surface. These observations suggest that the C-terminal domain is unstructured with the exception of the last 11-residue repeat (H10B). Similar monomer-dimer equilibrium suggests that the H10B region is responsible for nonspecific aggregation. Cholesterol efflux progressively increased with elongation up to ∼60% of full-length apoA-I in the absence of the H10B. In summary, the sequential repeats in the C-terminal domain are probably unstructured with the exception of H10B. This segment appears to be responsible for initiation of lipid binding and aggregation, as well as cholesterol efflux, and thus plays a vital role during HDL formation. Based on these observations and the Δ(185-243) crystal structure, we propose a lipid-free apoA-I structural model in solution and update the mechanism of HDL biogenesis.  相似文献   
78.
79.
80.
Hexavalent chromium (Cr[VI]) is a toxic environmental contaminant that is capable of producing a broad spectrum of DNA damage. The ability of Cr[VI] to induce mutagenesis and neoplastic transformation has been attributed to its genotoxic action, however our understanding of molecular mechanisms involved in the repair of Cr[VI]-induced DNA damage remains incomplete. Here, we report that Mus81, an enzyme that participates with Eme1 in the resolution of replication fork damage caused by certain lesions, is involved in the repair of Cr[VI]-induced DNA damage. Mus81-deficient cells were found to be more susceptible to Cr[VI]-induced proliferation arrest and more sensitive to the long-term cytotoxic effects of Cr[VI] than isogenic wild-type cells. Following Cr[VI] exposure, Mus81-deficient cells displayed a lag in the disappearance of Rad51 foci, exhibited elevated replication-associated γ-H2AX and showed an increased incidence of chromosomal instability compared to wild-type cells. Our findings support a role for Mus81 in the resolution of replication-associated DNA damage associated with this genotoxic agent, by converting Cr[VI]-DNA lesions into a form more amenable for homologous recombination.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号