首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   371篇
  免费   58篇
  429篇
  2023年   3篇
  2022年   3篇
  2021年   6篇
  2018年   6篇
  2016年   8篇
  2015年   7篇
  2014年   16篇
  2013年   11篇
  2012年   18篇
  2011年   28篇
  2010年   11篇
  2009年   11篇
  2008年   9篇
  2007年   16篇
  2006年   17篇
  2005年   15篇
  2004年   20篇
  2003年   19篇
  2002年   8篇
  2001年   13篇
  2000年   16篇
  1999年   15篇
  1998年   9篇
  1997年   7篇
  1996年   3篇
  1994年   3篇
  1993年   3篇
  1992年   11篇
  1991年   9篇
  1990年   8篇
  1989年   10篇
  1988年   3篇
  1987年   7篇
  1986年   5篇
  1985年   5篇
  1984年   4篇
  1983年   5篇
  1982年   4篇
  1981年   3篇
  1978年   3篇
  1977年   7篇
  1976年   5篇
  1975年   4篇
  1974年   4篇
  1973年   2篇
  1972年   2篇
  1971年   2篇
  1970年   3篇
  1967年   2篇
  1937年   3篇
排序方式: 共有429条查询结果,搜索用时 15 毫秒
421.
422.
423.
424.
Biochemical investigations of retinotectal adhesive specificity   总被引:4,自引:1,他引:3       下载免费PDF全文
The preferential adhesion of chick neural retina cells to surfaces of intact optic tecta has been investigated biochemically. The study uses a collection assay in which single cells from either dorsal or ventral halves of neural retain adhere preferentially to ventral or dorsal halves of optic tecta respectively. The data presented support the following conclusions: (a) The adhesion of ventral retina to dorsal tecta seems to depend on proteins located on ventral retina and on terminal β-N-acetylgalactosamine residues on dorsal tecta. (b) The adhesion of dorsal retina to ventral tecta seems to depend on proteins located on ventral tecta and on terminal β- N-acetylgalactosamine residues on dorsal retina. (c) A double gradient model for retinotectal adhesion along the dorsoventral axis is consistent with the data presented. The model utilizes only two complementary molecules. The molecule suggested to be concentrated dorsally in both retina and tectum seems to require terminal β-N-acetylgalactosamine residues for adhesion. Its activity is not affected by protease. A molecule fitting these qualifications, the ganglioside GM(2), could not be detected in a gradient, but lecithin vesicles containing GM(2) adhered preferentially to ventral tectal surfaces. The second molecule, concentrated ventrally in both retina and tectum, is a protein and seems capable of binding terminal β-N- acetylgalactosamine residues. One enzyme, UDP-galactose:GM(2) galactosyltransferase, has been found to be more concentrated in ventral retina than dorsal, but only by 30 percent.  相似文献   
425.
Inhibitors of porcine trypsin were prepared from aqueous extracts of the parasitic nematodes Ascaris suum (hogs) and Ascaris lumbricoides (human). In this study three experiments were performed. (1) Polyclonal antibodies were prepared against one isoform of trypsin inhibitor from each parasitic nematode. Each antibody reacted with all isoforms from itself as well as all isoforms from the other parasite. (2) Association equilibrium constants were measured by titrating host trypsins (porcine or human) with the isoforms of trypsin inhibitors from A. suum and A. lumbricoides. While three of the combinations formed tight complexes that can be precipitated, the fourth complex, A. suum trypsin inhibitor-human trypsin has a Ka that is a 300 to 1000 times weaker interaction than the three other titration pairs. (3) Live A. suum worms were incubated in isosmotic media that contained either porcine trypsin or human trypsin. A suum worms survived in porcine trypsin and in the controls but were killed and digested after exposure for 5 days in human trypsin. The first experiment suggests that the trypsin inhibitors from A. suum and A. lumbricoides have similar epitopes, while the second experiment suggests that there are differences near the reactive site of the inhibitors. The consequences of these differences are dramatically demonstrated by the third experiment in which live A. suum worms in the presence of human trypsin die and are digested but those in porcine trypsin survive. These experiments suggest that in order to parasitize a host, a nematode requires a complement of protease inhibitors that interact strongly with those host proteases that are in their environment.  相似文献   
426.
We studied glucose oxidation (Glu(ox)) and glycogen degradation during 140 min of constant-load [steady-state (SS)] and variable-intensity (VI) cycling of the same average power output, immediately followed by a 20-km performance ride [time trial (TT)]. Six trained cyclists each performed four trials: two experimental bouts (SS and VI) in which muscle biopsies were taken before and after 140 min of exercise for determination of glycogen and periodic acid-Schiff's staining; and two similar trials without biopsies but incorporating the TT. During two of the experimental rides, subjects ingested a 5 g/100 ml [U-(14)C]glucose solution to determine rates of Glu(ox). Values were similar between SS and VI trials: O(2) consumption (3.08 +/- 0.02 vs. 3.15 +/- 0.03 l/min), energy expenditure (901 +/- 40 vs. 904 +/- 58 J x kg(-1) x min(-1)), heart rate (156 +/- 1 vs. 160 +/- 1 beats/min), and rating of perceived exertion (12.6 +/- 0.6 vs. 12.7 +/- 0.7). However, the area under the curve for plasma lactate concentration vs. time was significantly greater during VI than SS (29.1 +/- 3.9 vs. 24.6 +/- 3. 7 mM/140 min; P = 0.03). VI resulted in a 49% reduction in total muscle glycogen utilization vs. 65% for SS, while total Glu(ox) was higher (99.2 +/- 5.3 vs. 83.9 +/- 5.2 g/140 min; P < 0.05). The number of glycogen-depleted type I muscle fibers at the end of 140 min was 98% after SS but only 59% after VI. Conversely, the number of type II fibers that showed reduced periodic acid-Schiff's staining was 1% after SS vs. 10% after VI. Despite these metabolic differences, subsequent TT performance was similar (29.14 +/- 0.9 vs. 30.5 +/- 0.9 min for SS vs. VI). These results indicate that whole body metabolic and cardiovascular responses to 140 min of either SS or VI exercise at the same average intensity are similar, despite differences in skeletal muscle carbohydrate metabolism and recruitment.  相似文献   
427.
428.
We have analyzed a collection of 12 mutations in the Drosophila melanogaster nod locus, which encodes a kinesin-like protein involved in female meiotic chromosome segregation. The kinesin-like domain is at the N-terminus of the protein, while the C-terminal portion of the protein is unique. Four of the mutations are missense and affect highly conserved domains of the kinesin-like portion of the predicted protein, and thus demonstrate that the sequence conservation is biologically relevant. Surprisingly, two other mutations, which behave genetically as null alleles, are the result of mutations in the last exon of the nod gene. Thus, these two mutations affect the most C-terminal residues in the unique portion of the predicted protein. Based on these mutations, we suggest that this part of the protein may also be essential for wild-type function. The mutations were induced by either gamma-rays or ethyl methanesulfonate (EMS). All of the gamma-ray induced mutations were small or large chromosomal rearrangements, while all of the EMS mutations were G → A transitions. These findings are consistent with the biochemical basis of the mode of action of each mutagen.  相似文献   
429.
Cancer cachexia is characterized by reductions in peripheral lean muscle mass. Prior studies have primarily focused on increased protein breakdown as the driver of cancer-associated muscle wasting. Therapeutic interventions targeting catabolic pathways have, however, largely failed to preserve muscle mass in cachexia, suggesting that other mechanisms might be involved. In pursuit of novel pathways, we used untargeted metabolomics to search for metabolite signatures that may be linked with muscle atrophy. We injected 7-week–old C57/BL6 mice with LLC1 tumor cells or vehicle. After 21 days, tumor-bearing mice exhibited reduced body and muscle mass and impaired grip strength compared with controls, which was accompanied by lower synthesis rates of mixed muscle protein and the myofibrillar and sarcoplasmic muscle fractions. Reductions in protein synthesis were accompanied by mitochondrial enlargement and reduced coupling efficiency in tumor-bearing mice. To generate mechanistic insights into impaired protein synthesis, we performed untargeted metabolomic analyses of plasma and muscle and found increased concentrations of two methylarginines, asymmetric dimethylarginine (ADMA) and NG-monomethyl-l-arginine, in tumor-bearing mice compared with control mice. Compared with healthy controls, human cancer patients were also found to have higher levels of ADMA in the skeletal muscle. Treatment of C2C12 myotubes with ADMA impaired protein synthesis and reduced mitochondrial protein quality. These results suggest that increased levels of ADMA and mitochondrial changes may contribute to impaired muscle protein synthesis in cancer cachexia and could point to novel therapeutic targets by which to mitigate cancer cachexia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号