首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1435篇
  免费   162篇
  2021年   15篇
  2020年   10篇
  2019年   12篇
  2018年   21篇
  2017年   20篇
  2016年   15篇
  2015年   47篇
  2014年   49篇
  2013年   59篇
  2012年   64篇
  2011年   70篇
  2010年   50篇
  2009年   50篇
  2008年   63篇
  2007年   67篇
  2006年   58篇
  2005年   61篇
  2004年   60篇
  2003年   60篇
  2002年   45篇
  2001年   50篇
  2000年   45篇
  1999年   29篇
  1998年   15篇
  1997年   21篇
  1996年   13篇
  1995年   10篇
  1994年   20篇
  1993年   19篇
  1992年   33篇
  1991年   22篇
  1990年   25篇
  1989年   23篇
  1988年   30篇
  1987年   30篇
  1986年   26篇
  1985年   22篇
  1984年   16篇
  1983年   21篇
  1982年   18篇
  1981年   14篇
  1979年   13篇
  1978年   9篇
  1977年   19篇
  1976年   11篇
  1974年   17篇
  1973年   19篇
  1972年   12篇
  1971年   9篇
  1969年   8篇
排序方式: 共有1597条查询结果,搜索用时 15 毫秒
991.
Proteins are major biological targets for oxidative damage within cells because of their high abundance and rapid rates of reaction with radicals and singlet oxygen. These reactions generate high yields of hydroperoxides. The turnover of both native and modified/damaged proteins is critical for maintaining cell homeostasis, with this occurring via the proteasomal and endosomal-lysosomal systems; the former is of particular importance for intracellular proteins. In this study we have examined whether oxidation products generated on amino acids, peptides, and proteins modulate 26S proteasome activity. We show that oxidation products, and particularly protein hydroperoxides, are efficient inhibitors of the 26S proteasome tryptic and chymotryptic activities, with this depending, at least in part, on the presence of hydroperoxide groups. Removal of these species by reduction significantly reduces proteasome inhibition. This loss of activity is accompanied by a loss of thiol residues, but an absence of radical formation, consistent with molecular, rather than radical, reactions being responsible for proteasome inhibition. Aldehydes also seem to play a role in the inhibition of chymotryptic activity, with this prevented by treatment with NaBH(4), which reduces these groups. Inhibition occurred at hydroperoxide concentrations of ≥1μM for oxidized amino acids and peptides and ≥10μM for oxidized proteins, compared with ca. 100μM for H(2)O(2), indicating that H(2)O(2) is a much less effective inhibitor. These data indicate that the formation of oxidized proteins within cells may modulate cell function by interfering with the turnover of native proteins and the clearance of modified materials.  相似文献   
992.
993.
Highlights? Both nSH2 and cSH2 domains of p85 inhibit basal activity of p110β ? p110β/p85β structure shows cSH2 contacts the C terminus of p110β ? Relief of cSH2 inhibition, unlike nSH2, requires extending beyond the pYXXM motif ? p110β C terminus is critical for phosphorylation of lipids and activation by RTKs  相似文献   
994.
Class I phosphoinositide-3-kinase (PI3K) isoforms generate the intracellular signaling lipid, phosphatidylinositol(3,4,5)trisphosphate (PtdIns(3,4,5)P(3)). PtdIns(3,4,5)P(3) regulates major aspects of cellular behavior, and the use of both genetic and pharmacological intervention has revealed important isoform-specific roles for PI3Ks in health and disease. Despite this interest, current methods for measuring PtdIns(3,4,5)P(3) have major limitations, including insensitivity, reliance on radiolabeling, low throughput and an inability to resolve different fatty-acyl species. We introduce a methodology based on phosphate methylation coupled to high-performance liquid chromatography-mass spectrometry (HPLC-MS) to solve many of these problems and describe an integrated approach to quantify PtdIns(3,4,5)P(3) and related phosphoinositides (regio-isomers of PtdInsP and PtdInsP(2) are not resolved). This methodology can be used to quantify multiple fatty-acyl species of PtdIns(3,4,5)P(3) in unstimulated mouse and human cells (≥10(5)) or tissues (≥0.1 mg) and their increase upon appropriate stimulation.  相似文献   
995.
Mycobacterium tuberculosis requires the enzyme isocitrate lyase (ICL) for growth and virulence in vivo. The demonstration that M. tuberculosis also requires ICL for survival during nutrient starvation and has a role during steady state growth in a glycerol limited chemostat indicates a function for this enzyme which extends beyond fat metabolism. As isocitrate lyase is a potential drug target elucidating the role of this enzyme is of importance; however, the role of isocitrate lyase has never been investigated at the level of in vivo fluxes. Here we show that deletion of one of the two icl genes impairs the replication of Mycobacterium bovis BCG at slow growth rate in a carbon limited chemostat. In order to further understand the role of isocitrate lyase in the central metabolism of mycobacteria the effect of growth rate on the in vivo fluxes was studied for the first time using 13C-metabolic flux analysis (MFA). Tracer experiments were performed with steady state chemostat cultures of BCG or M. tuberculosis supplied with 13C labeled glycerol or sodium bicarbonate. Through measurements of the 13C isotopomer labeling patterns in protein-derived amino acids and enzymatic activity assays we have identified the activity of a novel pathway for pyruvate dissimilation. We named this the GAS pathway because it utilizes the Glyoxylate shunt and Anapleurotic reactions for oxidation of pyruvate, and Succinyl CoA synthetase for the generation of succinyl CoA combined with a very low flux through the succinate – oxaloacetate segment of the tricarboxylic acid cycle. We confirm that M. tuberculosis can fix carbon from CO2 into biomass. As the human host is abundant in CO2 this finding requires further investigation in vivo as CO2 fixation may provide a point of vulnerability that could be targeted with novel drugs. This study also provides a platform for further studies into the metabolism of M. tuberculosis using 13C-MFA.  相似文献   
996.
997.
998.
Schizophrenia and bipolar disorder are leading causes of morbidity across all populations, with heritability estimates of ∼80% indicating a substantial genetic component. Population genetics and genome-wide association studies suggest an overlap of genetic risk factors between these illnesses but it is unclear how this genetic component is divided between common gene polymorphisms, rare genomic copy number variants, and rare gene sequence mutations. We report evidence that the lipid transporter gene ABCA13 is a susceptibility factor for both schizophrenia and bipolar disorder. After the initial discovery of its disruption by a chromosome abnormality in a person with schizophrenia, we resequenced ABCA13 exons in 100 cases with schizophrenia and 100 controls. Multiple rare coding variants were identified including one nonsense and nine missense mutations and compound heterozygosity/homozygosity in six cases. Variants were genotyped in additional schizophrenia, bipolar, depression (n > 1600), and control (n > 950) cohorts and the frequency of all rare variants combined was greater than controls in schizophrenia (OR = 1.93, p = 0.0057) and bipolar disorder (OR = 2.71, p = 0.00007). The population attributable risk of these mutations was 2.2% for schizophrenia and 4.0% for bipolar disorder. In a study of 21 families of mutation carriers, we genotyped affected and unaffected relatives and found significant linkage (LOD = 4.3) of rare variants with a phenotype including schizophrenia, bipolar disorder, and major depression. These data identify a candidate gene, highlight the genetic overlap between schizophrenia, bipolar disorder, and depression, and suggest that rare coding variants may contribute significantly to risk of these disorders.  相似文献   
999.
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号