首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   135篇
  免费   13篇
  2017年   1篇
  2016年   2篇
  2015年   3篇
  2014年   6篇
  2013年   8篇
  2012年   7篇
  2011年   6篇
  2010年   4篇
  2009年   2篇
  2008年   1篇
  2007年   5篇
  2006年   3篇
  2005年   4篇
  2004年   6篇
  2003年   6篇
  2002年   4篇
  2001年   4篇
  2000年   1篇
  1999年   4篇
  1998年   5篇
  1997年   3篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1987年   3篇
  1986年   2篇
  1985年   5篇
  1984年   4篇
  1983年   1篇
  1982年   5篇
  1981年   2篇
  1980年   3篇
  1979年   2篇
  1978年   1篇
  1977年   2篇
  1975年   1篇
  1974年   3篇
  1973年   2篇
  1971年   4篇
  1969年   1篇
  1968年   2篇
  1967年   1篇
  1966年   3篇
  1965年   2篇
  1960年   3篇
  1942年   1篇
  1941年   1篇
  1940年   1篇
  1939年   1篇
排序方式: 共有148条查询结果,搜索用时 46 毫秒
131.
132.
133.

Background  

Affinity purification followed by mass spectrometry identification (AP-MS) is an increasingly popular approach to observe protein-protein interactions (PPI) in vivo. One drawback of AP-MS, however, is that it is prone to detecting indirect interactions mixed with direct physical interactions. Therefore, the ability to distinguish direct interactions from indirect ones is of much interest.  相似文献   
134.
J. C. Hawke  R. M. Leech 《Planta》1987,171(4):489-495
In order to investigate the role of acetyl CoA carboxylase (ACC) in the regulation of fatty-acid biosynthesis in chloroplasts, the activities and relative amounts of the enzyme have been measured in the tissue of wheat (Triticum aestivum L.) leaves undergoing development and cellular differentiation. The total activity in the first leaves of 5- to 7-d-old plants was similar but decreased to less than half in 9-d-old plants. The activity of ACC in the cells of the first leaf of 7-d-old plants doubled when cell age increased from 24 to 48 h, remained relatively constant for a further 24 h and then declined. The amount of ACC in cells increased 15-fold during the first 36 h of cell enlargement. Cells more than 36 h old contained about two-thirds the maximum amount of ACC found in younger cells. The most rapid phase of fatty-acyl accumulation in lipids was in cells aged between 60 and 84 h. Tenfold changes in the activity of ACC were observed when the assay conditions with respect to ATP, ADP, Mg2+ and pH were changed to correspond to the physiological conditions in chloroplasts during light/dark transitions. This observation and the magnitude of the changes in the optimum activity and amount of ACC in leaf cells undergoing development are consistent with a role for ACC in the regulation of the flow of carbon from acetyl CoA to fatty acids in chloroplasts.Abbreviation ACC acetyl CoA carboxylase  相似文献   
135.
136.
A sample preparation method for protein C-terminal peptide isolation from cyanogen bromide (CNBr) digests has been developed. In this strategy, the analyte was reduced and carboxyamidomethylated, followed by CNBr cleavage in a one-pot reaction scheme. The digest was then adsorbed on ZipTipC18 pipette tips for conjugation of the homoserine lactone-terminated peptides with 2,2′-dithiobis (ethylamine) dihydrochloride, followed by reductive release of 2-aminoethanethiol from the derivatives. The thiol-functionalized internal and N-terminal peptides were scavenged on activated thiol sepharose, leaving the C-terminal peptide in the flow-through fraction. The use of reversed-phase supports as a venue for peptide derivatization enabled facile optimization of the individual reaction steps for throughput and completeness of reaction. Reagents were replaced directly on the support, allowing the reactions to proceed at minimal sample loss. By this sequence of solid-phase reactions, the C-terminal peptide could be recognized uniquely in mass spectra of unfractionated digests by its unaltered mass signature. The use of the sample preparation method was demonstrated with low-level amounts of a whole, intact model protein. The C-terminal fragments were retrieved selectively and efficiently from the affinity support. The use of covalent chromatography for C-terminal peptide purification enabled recovery of the depleted material for further chemical and/or enzymatic manipulation. The sample preparation method provides for robustness and simplicity of operation and is anticipated to be expanded to gel-separated proteins and in a scaled-up format to high-throughput protein profiling in complex biological mixtures.  相似文献   
137.
A cholecystokinin molecule larger than any previously chemically characterized was purified from canine proximal small intestine mucosa. The purification procedure consisted of sequential steps of affinity chromatography, gel filtration, and high pressure liquid chromatography. Activity was detected and quantitated by radioimmunoassay with an antibody that recognized the carboxyl terminal sequence of porcine cholecystokinin. Microsequencing of the purified peptide revealed an amino terminal nonadecapeptide sequence (AQKVNSGEPRAHLGALLAR) not present in known cholecystokinin molecules followed by a nonadecapeptide sequence (YIQQARKAPSGRMSVIKNL) that corresponds exactly to the amino terminal sequence of porcine cholecystokinin 39 except for reversed positions of a Met and a Val residue. Based on the sequence analysis, immunoreactivity, and presence of biological activity in two bioassay systems, this peptide, tentatively named cholecystokinin 58, may be a biosynthetic precursor of the smaller forms previously characterized in gastrointestinal and brain tissues.  相似文献   
138.
The two dimorphic forms of chloroplast isolated from maize leaves utilized acetate for fatty acid biosynthesis and had similar requirements for cofactors. The oleate:palmitate ratio of the fatty acid products was lower for bundle sheath chloroplasts as was acetate incorporation into total fatty acids. Galactose from UDP-galactose was incorporated into galactolipids by both morphological forms to give monogalactosyl diacylglycerol and digalactosyl diacylglycerol in the ratio of 4:1.  相似文献   
139.
140.
A sample-preparation method for N-terminal peptide isolation from protein proteolytic digests has been developed. Protein thiols and primary amines were protected by carboxyamidomethylation and acetylation, respectively, followed by trypsinization. The digest was bound to ZipTipC18 pipette tips for reaction of the newly generated N-termini with sulfosuccinimidyl-6-[3′-(2-pyridyldithio)-propionamido] hexanoate. The digest was subsequently exposed to hydroxylamine for reversal of hydroxyl group acylation, followed by reductive release of the pyridine-2-thione moiety from the derivatives. The thiol group-functionalized internal and C-terminal peptides were reversibly captured by covalent chromatography on activated thiol sepharose leaving the N-terminal fragment free in solution. The use of the reversed-phase supports as a reaction bed enabled optimization of the serial modification steps for throughput and completeness of derivatization. The use of the sample-preparation method was demonstrated with low picomole amounts of in-solution- and in-gel-digested protein. The N-terminal peptide was selectively retrieved from the affinity support. The sample-preparation method provides for throughput, robustness, and simplicity of operation using standard equipment available in most biological laboratories and is anticipated to be readily expanded to proteome-wide applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号