首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   135篇
  免费   13篇
  2017年   1篇
  2016年   2篇
  2015年   3篇
  2014年   6篇
  2013年   8篇
  2012年   7篇
  2011年   6篇
  2010年   4篇
  2009年   2篇
  2008年   1篇
  2007年   5篇
  2006年   3篇
  2005年   4篇
  2004年   6篇
  2003年   6篇
  2002年   4篇
  2001年   4篇
  2000年   1篇
  1999年   4篇
  1998年   5篇
  1997年   3篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1987年   3篇
  1986年   2篇
  1985年   5篇
  1984年   4篇
  1983年   1篇
  1982年   5篇
  1981年   2篇
  1980年   3篇
  1979年   2篇
  1978年   1篇
  1977年   2篇
  1975年   1篇
  1974年   3篇
  1973年   2篇
  1971年   4篇
  1969年   1篇
  1968年   2篇
  1967年   1篇
  1966年   3篇
  1965年   2篇
  1960年   3篇
  1942年   1篇
  1941年   1篇
  1940年   1篇
  1939年   1篇
排序方式: 共有148条查询结果,搜索用时 15 毫秒
121.
The present study compared ouabain-sensitive unidirectional K+ flux into (JinK) and out of (JoutK) perfused rat hindlimb skeletal muscle in situ and mouse flexor digitorum brevis (FDB) in vitro. In situ, 5 mM ouabain inhibited 54 +/- 4% of the total JinK in 28 +/- 1 min, and increased the net and unidirectional efflux of K+ within 4 min. In contrast, 1.8 mM ouabain inhibited 40 +/- 8% of the total JinK in 38 +/- 2 min, but did not significantly affect JoutK. In vitro, 1.8 and 0.2 mM ouabain decreased JinK to a greater extent (83 +/- 5%) than in situ, but did not significantly affect 42K loss rate compared with controls. The increase in unidirectional K+ efflux (JoutK) with 5 mM ouabain in situ was attributed to increased K+ efflux through cation channels, since addition of barium (1 mM) to ouabain-perfused muscles returned JoutK to baseline values within 12 min. Perfusion with 5 mM ouabain plus 2 mM tetracaine for 30 min decreased JinK 46 +/- 9% (0.30 +/- 0.03 to 0.16 +/- 0.02 micromol x min(-1) x g(-1)), however tetracaine was unable to abolish the ouabain-induced increase in unidirectional K+ efflux. In both rat hindlimb and mouse FDB, tetracaine had no effect on JoutK. Perfusion of hindlimb muscle with 0.1 mM tetrodotoxin (TTX, a Na+ channel blocker) decreased JinK by 15 +/- 1%, but had no effect on JoutK; subsequent addition of ouabain (5 mM) decreased JinK a further 32 +/- 2%. The ouabain-induced increase in unidirectional K+ efflux did not occur when TTX was perfused prior to and during perfusion with 5 mM ouabain. We conclude that 5 mM ouabain increases the unidirectional efflux of K+ from skeletal muscle through a barium and TTX-sensitive pathway, suggestive of voltage sensitive Na+ channels, in addition to inhibiting Na+/K+-ATPase activity.  相似文献   
122.
Immunofluorescent staining techniques were used to study the distribution of the Ca(2) + Mg(2+)-dependent ATPase and calsequestrin in primary cultures of differentiating rat skeletal muscle cells, grown for different periods of time under various culture conditions. In mononucleated myoblasts calsequestrin was detected after 45 h in culture whereas the ATPase was not detected until 60 h. After cell fusion began, both proteins could be identified in all multinucleated cells. Myoblasts grown for longer than 60 h in low Ca(2+) medium contained calsequestrin and the ATPase, even though they were unable to fuse. These studies at the cellular level confirm biochemical findings on the biosynthesis of calsequestrin and the ATPase. Immunofluorescent staining of myoblasts showed that calsequestrin first appears in a well-defined region of the cell near one end of the nucleus. At later times, the staining occupied progressively larger regions adjacent to the nucleus and took on a fibrous appearance. This suggests that calsequestrin first accumulates in the Golgi region and then gradually spreads throughout the cell. In contrast, the ATPase appeared to be concentrated in many small patches or foci throughout the cytoplasm and was never confined to one particular region, although some parts of the cell often stained more intensely than others. In multinucleated cells, alternating dark and fluorescent strands parallel to the longitudinal axis of the cells were evident.  相似文献   
123.
The incorporation into diglycerides of the acyl products synthesized from acetate by spinach chloroplasts was greatly stimulated by the addition of glycerol 3-phosphate. When UDP-galactose was added also, monogalactosyldiglycerides became the major products. Palmitate biosynthesis was stimulated about twofold by these additions, while oleate biosynthesis decreased slightly, so that oleate:palmitate ratios were in the range 0.6 to 0.8 rather than about 1.6 when glycerol 3-phosphate and UDP-galactose were not added. On the other hand, Triton X-100 greatly stimulated both oleate and palmitate biosynthesis to give oleate:palmitate ratios of about 2.0. The proportions of oleate and palmitate in the newly synthesized diglycerides, or in monogalactosyldiglycerides when exogenous UDP-galactose was added, did not always reflect the proportions of these two fatty acids synthesized from acetate. When oleate:palmitate ratios were ?1, equal amounts were incorporated into diglycerides or into monogalactosyldiglycerides. When oleate:palmitate ratios were <1, incorporation of palmitate into diglycerides and monogalactosyldiglycerides exceeded that of oleate. 1-Oleoyl, 2-palmitoyl glycerol compounds were the principal products under all conditions but 1,2-dipalmitoyl compounds were also quantitatively important when glycerol 3-phosphate alone, or glycerol 3-phosphate together with UDP-galactose, was added. The distribution of label in the constituent glycerol and fatty acid moieties when monogalactosyldiglycerides were synthesized from diglycerides is consistent with galactosylation occurring without modification or exchange of fatty acids. The distribution of 16- and 18-carbon acyl residues between the 1 and 2 stereospecific positions of newly synthesized monogalactosyldiglyceride was typical of the endogenous polyene monogalactosyldiglycerides. However when palmitate synthesis was in excess of oleate synthesis some palmitate was esterified in position 1, whereas in the endogenous monogalactosyldiglycerides hexadecatrienoate is confined to position 2.  相似文献   
124.
125.
126.
The capacity for skeletal muscle to repair from daily insults as well as larger injuries is a vital component to maintaining muscle health over our lifetime. Given the importance of skeletal muscle for our physical and metabolic well-being, identifying novel factors mediating the growth and repair of skeletal muscle will thus build our foundational knowledge and help lead to potential therapeutic avenues for muscle wasting disorders. To that end, we investigated the expression of T-cell death associated gene 51 (TDAG51) during skeletal muscle repair and studied the response of TDAG51 deficient (TDAG51-/-) mice to chemically-induced muscle damage.TDAG51 mRNA and protein expression within uninjured skeletal muscle is almost undetectable but, in response to chemically-induced muscle damage, protein levels increase by 5 days post-injury and remain elevated for up to 10 days of regeneration. To determine the impact of TDAG51 deletion on skeletal muscle form and function, we compared adult male TDAG51-/- mice with age-matched wild-type (WT) mice. Body and muscle mass were not different between the two groups, however, in situ muscle testing demonstrated a significant reduction in force production both before and after fatiguing contractions in TDAG51-/- mice.During the early phases of the regenerative process (5 days post-injury), TDAG51-/- muscles display a significantly larger area of degenerating muscle tissue concomitant with significantly less regenerating area compared to WT (as demonstrated by embryonic myosin heavy chain expression). Despite these early deficits in regeneration, TDAG51-/- muscles displayed no morphological deficits by 10 days post injury compared to WT mice.Taken together, the data presented herein demonstrate TDAG51 expression to be upregulated in damaged skeletal muscle and its absence attenuates the early phases of muscle regeneration.  相似文献   
127.
Curcumin (diferuloylmethane) is a potent anti-inflammatory and anti-tumorigenic agent that has shown preclinical activity in diverse cancers. Curcumin up-regulates heat shock protein 70 (hsp70) mRNA in several different cancer cell lines. Hsp70 contributes to an escape from the apoptotic effects of curcumin by several different mechanisms including prevention of the release of apoptosis inducing factor from the mitochondria and inhibition of caspases 3 and 9. Previously we showed that the combination of curcumin plus a heat shock protein inhibitor was synergistic in its down-regulation of the proliferation of a human schwannoma cell line (HEI-193) harboring an NF2 mutation, possibly because curcumin up-regulated hsp70, which also binds merlin, the NF2 gene product. In order to determine if curcumin also interacts directly with hsp70 and to discover other binding partners of curcumin, we synthesized biotinylated curcumin (bio-curcumin) and treated HEI-193 schwannoma cells. Cell lysates were prepared and incubated with avidin-coated beads. Peptides pulled down from this reaction were sequenced and it was determined that biotinylated curcumin bound hsp70, hsp90, 3-phosphoglycerate dehydrogenase, and a β-actin variant. These binding partners may serve to further elucidate the underlying mechanisms of curcumin’s actions.  相似文献   
128.
129.
Comparison of protein profiles of sera acquired before and after preoperative chemotherapy for breast cancer may reveal tumor markers that could be used to monitor tumor response. In this study, we analyzed pre‐ and post‐chemotherapy protein profiles of sera from 39 HER2‐postive breast cancer patients (n=78 samples) who received 6 months of preoperative chemotherapy using LC‐MALDI‐TOF/MS technology. We detected qualitative and quantitative differences in pair‐wise comparison of pre‐ and post chemotherapy samples that were different in patients who achieved pathological complete response (pCR, n=21) compared with those with residual disease (n=18). We identified 2329 and 3152 peaks as differentially expressed in the pre‐chemotherapy samples of the responders and non‐responders. Comparison of matching pre‐ and post‐chemotherapy samples identified 34 (32 decreased, two increased) and 304 peaks (157 decreased, 147 increased) that significantly changed (p<0.01, false discovery rate ≤20%) after treatment in responders and non‐responders, respectively. The top 11 most significantly altered peptide peaks with the greatest change in intensity were positively identified. These corresponded to eight proteins including α‐2‐macroglobulin, complement 3, hemopexin, and serum amyloid P in the responder group and chains C and A of apolipoprotein A‐I, hemopexin precursor, complement C, and amyloid P component in the non‐responding groups. All proteins decreased after therapy, except chain C apolipoprotein A and hemopexin precursor that increased. These results suggest that changes in serum protein levels occur in response to chemotherapy and these changes partly appear different in patients who are highly sensitive to chemotherapy compared with those with lesser response.  相似文献   
130.
Tyrosine phosphorylation controls PCNA function through protein stability   总被引:1,自引:0,他引:1  
The proliferating cell nuclear antigen (PCNA) is an essential protein for DNA replication and damage repair. How its function is controlled remains an important question. Here, we show that the chromatin-bound PCNA protein is phosphorylated on Tyr 211, which is required for maintaining its function on chromatin and is dependent on the tyrosine kinase activity of EGF receptor (EGFR) in the nucleus. Phosphorylation on Tyr 211 by EGFR stabilizes chromatin-bound PCNA protein and associated functions. Consistently, increased PCNA Tyr 211 phosphorylation coincides with pronounced cell proliferation, and is better correlated with poor survival of breast cancer patients, as well as nuclear EGFR in tumours, than is the total PCNA level. These results identify a novel nuclear mechanism linking tyrosine kinase receptor function with the regulation of the PCNA sliding clamp.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号