首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   0篇
  19篇
  2020年   1篇
  2014年   4篇
  2012年   2篇
  2011年   2篇
  2008年   2篇
  2006年   1篇
  2005年   2篇
  2000年   4篇
  1995年   1篇
排序方式: 共有19条查询结果,搜索用时 0 毫秒
11.

Background

The limited effectiveness of cardiac cell therapy has generated concern regarding its clinical relevance. Experimental studies show that cell retention and engraftment are low after injection into ischemic myocardium, which may restrict therapy effectiveness significantly. Surgical aspects and mechanical loss are suspected to be the main culprits behind this phenomenon. As current techniques of monitoring intramyocardial injections are complex and time-consuming, the aim of the study was to develop a fast and simple model to study cardiac retention and distribution following intramyocardial injections. For this purpose, our main hypothesis was that macroscopic fluorescence imaging could adequately serve as a detection method for intramyocardial injections.

Methods and Results

A total of 20 mice underwent ligation of the left anterior descending artery (LAD) for myocardial infarction. Fluorescent microspheres with cellular dimensions were used as cell surrogates. Particles (5×105) were injected into the infarcted area of explanted resting hearts (Ex vivo myocardial injetions EVMI, n = 10) and in vivo into beating hearts (In vivo myocardial injections IVMI, n = 10). Microsphere quantification was performed by fluorescence imaging of explanted organs. Measurements were repeated after a reduction to homogenate dilutions. Cardiac microsphere retention was 2.78×105±0.31×105 in the EVMI group. In the IVMI group, cardiac retention of microspheres was significantly lower (0.74×105±0.18×105; p<0.05). Direct fluorescence imaging revealed venous drainage through the coronary sinus, resulting in a microsphere accumulation in the left (0.90×105±0.20×105) and the right (1.07×105±0.17×105) lung. Processing to homogenates involved further particle loss (p<0.05) in both groups.

Conclusions

We developed a fast and simple direct fluorescence imaging method for biodistribution analysis which enabled the quantification of fluorescent microspheres after intramyocardial delivery using macroscopic fluorescence imaging. This new technique showed massive early particle loss and venous drainage into the right atrium leading to substantial accumulation of graft particles in both lungs.  相似文献   
12.
When designing an extracorporeal hybrid liver support device, special attention should be paid to providing the architectural basis for reconstructing a proper cellular microenvironment that ensures highest and prolonged functional activity of the liver cells. The common goal is to achieve high cell density culture and to design the bioreactor for full-scale primary liver cell cultures under adequate mass transfer conditions. An important aim of this study was to evaluate the biochemical performance of a flat membrane bioreactor that permits high-density hepatocyte culture and simultaneously to culture cells under sufficient oxygenation availability conditions comparable to the in vivo-like microenvironment. In such a bioreactor pig liver cells were cultured within an extracellular matrix between oxygen-permeable flat-sheet membranes. In this investigation we used a novel scaled-up prototype consisting of up to 20 modules in a parallel mode. Each module was seeded with 2 x 10(8) cells. Microscopic examination of the hepatocytes revealed morphological characteristics as found in vivo. Cell concentration increased in the first days of culture, as indicated by DNA measurements. The performance of the bioreactor was monitored for 18 days in terms of albumin synthesis, urea synthesis, ammonia elimination, and diazepam metabolism. The ability of the hepatocytes to synthesize albumin and urea increased during the first days of culture. Higher rates of albumin synthesis were obtained at day 9 and remained at a value of 1.41 pg/h/cell until day 18 of culture. The rate of urea synthesis increased from 23 ng/h/cell to 28 ng/h/cell and then remained constant. Cells eliminated ammonia at a rate of about 56 pg/h/cell, which was constant over the experimental period. Hepatocytes in the bioreactor metabolized diazepam and generated three different metabolites: nordiazepam, temazepam, and oxazepam. The production of such metabolites was sustained until 18 days of culture. These results demonstrated that the scale-up of the bioreactor was assessed, and it could be demonstrated that the device design aimed at the reconstruction of the liver-specific tissue architecture supported the expression of liver-specific functions of primary pig liver cells.  相似文献   
13.
Routine commercial and clinical applications of human pluripotent stem cells (hPSCs) and their progenies will require increasing cell quantities that cannot be provided by conventional adherent culture technologies. Here we describe a straightforward culture protocol for the expansion of undifferentiated human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) in suspension culture. This culture technique was successfully tested on two hiPSC clones, three hESC lines and on a nonhuman primate ESC line. It is based on a defined medium and single-cell inoculation, but it does not require culture preadaptation, use of microcarriers or any other matrices. Over a time course of 4-7 d, hPSCs can be expanded up to sixfold. Preparation of a high-density culture and its subsequent translation to scalable stirred suspension in Erlenmeyer flasks and stirred spinner flasks are also feasible. Importantly, hPSCs maintain pluripotency and karyotype stability for more than ten passages.  相似文献   
14.
Embedded in an extracellular matrix, biofilm-residing bacteria are protected from diverse physicochemical insults. In accordance, in the human host the general recalcitrance of biofilm-grown bacteria hinders successful eradication of chronic, biofilm-associated infections. In this study, we demonstrate that upon addition of promethazine, an FDA approved drug, antibiotic tolerance of in vitro biofilm-grown bacteria can be abolished. We show that following the addition of promethazine, diverse antibiotics are capable of efficiently killing biofilm-residing cells at minimal inhibitory concentrations. Synergistic effects could also be observed in a murine in vivo model system. PMZ was shown to increase membrane potential and interfere with bacterial respiration. Of note, antibiotic killing activity was elevated when PMZ was added to cells grown under environmental conditions that induce low intracellular proton levels. Our results imply that biofilm-grown bacteria avoid antibiotic killing and become tolerant by counteracting intracellular alkalization through the adaptation of metabolic and transport functions. Abrogation of antibiotic tolerance by interfering with the cell’s bioenergetics promises to pave the way for successful eradication of biofilm-associated infections. Repurposing promethazine as a biofilm-sensitizing drug has the potential to accelerate the introduction of new treatments for recalcitrant, biofilm-associated infections into the clinic.  相似文献   
15.
The onset of hepatic encephalopathy is a multifactorial process in which endogenous benzodiazepines and hyperammonemia play a pivotal role. The treatment of comatose states in liver failure is one of the major functions of a bioartificial liver. A controlled study demonstrating the capacity of a large scale bioartificial liver to detoxify benzodiazepines could be a crucial prerequisite to break this circle of events leading to coma. The aim of this study was therefore to expose the bioreactor to high levels of benzodiazepines and ammonia for evaluation of its detoxifying capacity. We have developed a novel and unique device reconstructing the plate architecture of the liver. Porcine hepatocytes were co-cultured with non-parenchymal cells. We investigated benzodiazepine metabolism using diazepam as model drug. The bioreactor was also loaded with high levels of ammonia and ammonia clearance as well as urea secretion with ammonia challenge were investigated. Albumin secretion was analysed in parallel as a control viability and tissue specific secretory parameter. The results clearly show that the velocity of diazepam turnover increases between day 1 and 2 and stabilises at high levels. Typical diazepam metabolites including temazepam, N-desmethyl-diazepam and oxazepam were generated. Cell specific functions, including albumin secretion, were comparable to an in vivo liver. We conclude that the flat membrane bioreactor used as bioartificial liver has the potential to detoxify diazepam and ammonia at significant amounts. Maintenance of monoxygenase activities in vitro is one of the strongholds of the bioreactor concept presented in this study.  相似文献   
16.
Cryopreserved porcine hepatocytes in collagen cultures secreted albumin (up to 98 ± 3 g ml–1; non-cryopreserved controls: 100 ± 9 g ml–1) and metabolised diazepam (67.5% ± 7.5% of initially applied diazepam are metabolised; 77.5% ± 10% in non-cryopreserved controls) for up to 14 days after thawing. The cultures resembled the recently developed flat membrane bioreactors. Addition of 5% (v/v) serum did not effect diazepam metabolism. Hepatocytes in collagen-sandwich cultures offer a storable liver support system for potential clinical use.  相似文献   
17.
18.
The goal of this study was to establish and validate a protocol for preparing bovine cardiomyocytes from slaughterhouse material for nuclear transfer experiments. The cardiomyocyte was selected because it is a terminally differentiated cell and strongly expresses a unique subset of genes which can be monitored during the reprogramming period. A total of 39 trials were conducted, and an optimized protocol was developed yielding individual contractile cardiomyocytes from 3-5-month-old bovine fetuses The basic protocol involves stabilization of bovine heart tissue for transportation from the slaughterhouse to the laboratory by perfusion with Custodiol. This was followed by an enzymatic dissociation with collagenase in calcium-free medium and yielded individual contractile rod-shaped cardiomyocytes. Subsequent addition of Ca2+ caused the cardiomyocytes to round up which was an essential pre-condition for drawing them into glass transfer pipettes for delivery into the perivitelline space and for efficient electrofusion with cytoplasts derived from in vitro matured bovine oocytes. The use of cardiomyocytes maintained at 37 degrees C in nuclear transfer, resulted in a significantly reduced proportion of blastocysts compared to adult fibroblasts (14.0% versus 32.7%). Storage of cardiomyocytes at 4 degrees C prior to nuclear transfer was not compatible with blastocyst development. It is expected that this system will be valuable for investigating the reprogramming of gene expression which occurs after somatic cell nuclear transfer.  相似文献   
19.
Alveolar type II (AT2) epithelial cells have important functions including the production of surfactant and regeneration of lost alveolar type I epithelial cells. The ability of in vitro production of AT2 cells would offer new therapeutic options in treating pulmonary injuries and disorders including genetically based surfactant deficiencies. Aiming at the generation of AT2-like cells, the differentiation of murine embryonic stem cells (mESCs) toward mesendodermal progenitors (MEPs) was optimized using a "Brachyury-eGFP-knock in" mESC line. eGFP expression demonstrated generation of up to 65% MEPs at day 4 after formation of embryoid bodies (EBs) under serum-free conditions. Plated EBs were further differentiated into AT2-like cells for a total of 25 days in serum-free media resulting in the expression of endodermal marker genes (FoxA2, Sox17, TTR, TTF-1) and of markers for distal lung epithelium (surfactant proteins (SP-) A, B, C, and D, CCSP, aquaporin 5). Notably, expression of SP-C as the only known AT2 cell specific marker could be detected after serum-induction as well as under serum-free conditions. Cytoplasmic localization of SP-C was demonstrated by confocal microscopy. The presence of AT2-like cells was confirmed by electron microscopy providing evidence for polarized cells with apical microvilli and lamellar body-like structures. Our results demonstrate the differentiation of AT2-like cells from mESCs after serum-induction and under serum-free conditions. The established serum-free differentiation protocol will facilitate the identification of key differentiation factors leading to a more specific and effective generation of AT2-like cells from ESCs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号