首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   137篇
  免费   21篇
  2022年   1篇
  2021年   3篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2015年   3篇
  2014年   2篇
  2013年   13篇
  2012年   5篇
  2011年   6篇
  2010年   9篇
  2009年   6篇
  2008年   4篇
  2007年   8篇
  2006年   16篇
  2005年   5篇
  2004年   6篇
  2003年   13篇
  2002年   10篇
  2001年   1篇
  1999年   5篇
  1998年   5篇
  1997年   2篇
  1996年   3篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1981年   3篇
  1980年   2篇
  1977年   2篇
  1975年   1篇
  1974年   1篇
  1959年   1篇
  1958年   1篇
  1957年   1篇
排序方式: 共有158条查询结果,搜索用时 696 毫秒
41.
The precise role of vascular endothelial growth factor (VEGF) in regulating integrins in brain microvascular endothelial cells is unknown. Here, we analyzed VEGF effects on integrin expression and activation in human brain microvascular endothelial cells (HBMECs). Using human cDNA arrays and ribonuclease (RNase) protection assays, we observed that VEGF up-regulated the mRNA expression of alpha(6) integrin in HBMECs. VEGF significantly increased alpha(6)beta(1) integrin expression, but not alpha(6)beta(4) integrin expression in these cells. Specific down-regulation of alpha(6) integrin expression by small interfering RNA (siRNA) oligonucleotides inhibited both the capillary morphogenesis of HBMECs and their adhesion and migration. Additionally, VEGF treatment resulted in activation of alpha(6)beta(1) integrins in HBMECs. Functional blocking of alpha(6) integrin with its specific antibody inhibited the VEGF-induced adhesion and migration as well as in vivo angiogenesis, and markedly suppressed tumor angiogenesis and breast carcinoma growth in vivo. Thus, VEGF can modulate angiogenesis via increased expression and activation of alpha(6)beta(1) integrins, which may promote VEGF-driven tumor angiogenesis in vivo.  相似文献   
42.
Substantial evidence exists supporting the notion that Csk and CHK, two negative regulatory kinases of the Src tyrosine kinase family, play distinct roles during development of the nervous system. One of the differences relies on the effects of both kinases on the MAPK transduction pathway. Specifically, CHK was shown to enhance MAPK signaling, while the role of Csk was unclear. In this work, we compared the effect of CHK versus Csk on MAPK signaling and elucidated the signaling pathway mediated by CHK leading to the activation of Erk1/2. Exogenous expression of wild-type CHK, but not Csk or a dead-kinase mutant of CHK, resulted in enhanced Erk1/2 phosphorylation in PC12 cells. CHK inhibited Src activity following stimulation of the cells with NGF. However, stimulation of Erk1/2 activation by CHK was independent of the NGF stimulation or the inhibition of Src kinase by CHK. CHK induced a complex formation between SHP-2 and Grb2, subsequently leading to the increased activity of Ras as well as Erk1/2 activation via the Raf/MEK1/2 pathway. Down-regulation of the expression of endogenous CHK by RNAi in PC12 cells led to a significant decrease in MAPK activation following NGF stimulation. Stimulation of CHK-overexpressing PC12 cells with EGF induced neurite outgrowth in the majority of cells. Taken together, this study describes for the first time the Src-independent actions of CHK and provides novel insights into CHK function in neural cells.  相似文献   
43.
A study of the conformational spaces of the chiral proton pump inhibitor (PPI) drug omeprazole by semiempirical, ab-initio, and DFT methods is described. In addition to the chiral center at the sulfinyl sulfur atom, the chiral axis at the pyridine ring (due to the hindered rotation of the 4-methoxy substituents) was considered. The results were analyzed in terms of the 5-methoxy and 6-methoxy tautomers and the two pairs of enantiomers (R,P)/(S,M) and (R,M)/(S,P). Five torsion angles were systematically explored: the backbone rotations defined by D1 (N3-C2-S10-O11), D2 (C2-S10-C12-C13), and D3 (S10-C12-C13-N14) and two methoxy rotations defined by D4 (C6-C5-O8-C9) and D5 (C16-C17-O19-C20). Significant energy differences were revealed between the 5- and 6-methoxy tautomers, the extended and folded conformations, and the (S,M) and (S,P) diastereomers. The "extended M" conformation of the 6-methoxy tautomer of (S)-omeprazole was found to be the most stable conformer.  相似文献   
44.
The genetic factors responsible for the regulation of cell division in Mycobacterium tuberculosis are largely unknown. We showed that exposure of M. tuberculosis to DNA damaging agents, or to cephalexin, or growth of M. tuberculosis in macrophages increased cell length and sharply elevated the expression of Rv2719c, a LexA-controlled gene. Overexpression of Rv2719c in the absence of DNA damage or of antibiotic treatment also led to filamentation and reduction in viability both in broth and in macrophages indicating a correlation between Rv2719c levels and cell division. Overproduction of Rv2719c compromised midcell localization of FtsZ rings, but had no effect on the intracellular levels of FtsZ. In vitro, the Rv2719c protein did not interfere with the GTP-dependent polymerization activity of FtsZ indicating that the effects of Rv2719c on Z-ring assembly are indirect. Rv2719c protein exhibited mycobacterial murein hydrolase activity that was localized to the N-terminal 110 amino acids. Visualization of nascent peptidoglycan (PG) synthesis zones by probing with fluoresceinated vancomycin (Van-FL) and localization of green fluorescent protein-Rv2719c fusion suggested that the Rv2719c activity is targeted to potential PG synthesis zones. We propose that Rv2719c is a potential regulator of M. tuberculosis cell division and that its levels, and possibly activities, are modulated under a variety of growth conditions including growth in vivo and during DNA damage, so that the assembly of FtsZ-rings, and therefore the cell division, can proceed in a regulated manner.  相似文献   
45.
Evolutionary divergence in behavioural traits related to mating may represent the initial stage of speciation. Direct selective forces are usually invoked to explain divergence in mate‐recognition traits, often neglecting a role for neutral processes or concomitant differentiation in ecological traits. We adopted a multi‐trait approach to obtain a deeper understanding of the mechanisms behind allopatric divergence in the Amazonian frog, Allobates femoralis. We tested the null hypothesis that geographic distance between populations correlates with genetic and phenotypic divergence, and compared divergence between mate‐recognition (acoustic) and ecological (coloration, body‐shape) traits. We quantified geographic variation in 39 phenotypic traits and a mitochondrial DNA marker among 125 individuals representing eight populations. Geographic variation in acoustic traits was pronounced and tracked the spatial genetic variation, which appeared to be neutral. Thus, the evolution of acoustic traits tracked the shared history of the populations, which is unexpected for pan‐Amazonian taxa or for mate‐recognition traits. Divergence in coloration appeared uncorrelated with genetic distance, and might be partly attributed to local selective pressures, and perhaps to Batesian mimicry. Divergence in body‐shape traits was low. The results obtained depict a complex evolutionary scenario and emphasize the importance of considering multiple traits when disentangling the forces behind allopatric divergence. ©2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 98 , 826–838.  相似文献   
46.
Lee SH  Hava DL  Waldor MK  Camilli A 《Cell》1999,99(6):625-634
The temporal expression patterns of the critical Vibrio cholerae virulence genes, tcpA and ctxA, were determined during infection using a recombinase reporter. TcpA was induced biphasically in two temporally and spatially separable events in the small intestine, whereas ctxA was induced monophasically only after, and remarkably, dependent upon, tcpA expression; however, this dependence was not observed during in vitro growth. The requirements of the virulence regulators, ToxR, TcpP, and ToxT, for expression of tcpA and ctxA were determined and were found to differ significantly during infection versus during growth in vitro. These results illustrate the importance of examining virulence gene expression in the context of bona fide host-pathogen interactions.  相似文献   
47.
48.
Fluid shear stress and the vascular endothelium: for better and for worse   总被引:28,自引:0,他引:28  
As blood flows, the vascular wall is constantly subjected to physical forces, which regulate important physiological blood vessel responses, as well as being implicated in the development of arterial wall pathologies. Changes in blood flow, thus generating altered hemodynamic forces are responsible for acute vessel tone regulation, the development of blood vessel structure during embryogenesis and early growth, as well as chronic remodeling and generation of adult blood vessels. The complex interaction of biomechanical forces, and more specifically shear stress, derived by the flow of blood and the vascular endothelium raise many yet to be answered questions:How are mechanical forces transduced by endothelial cells into a biological response, and is there a "shear stress receptor"?Are "mechanical receptors" and the final signaling pathways they evoke similar to other stimulus-response transduction systems?How do vascular endothelial cells differ in their response to physiological or pathological shear stresses?Can shear stress receptors or shear stress responsive genes serve as novel targets for the design of diagnostic and therapeutic modalities for cardiovascular pathologies?The current review attempts to bring together recent findings on the in vivo and in vitro responses of the vascular endothelium to shear stress and to address some of the questions raised above.  相似文献   
49.
HIV-1 Tat-mediated apoptosis in human brain microvascular endothelial cells   总被引:7,自引:0,他引:7  
The integrity of the blood-brain barrier (BBB) is critical for normal brain function. Neuropathological abnormalities in AIDS patients have been associated with perivascular HIV-infected macrophages, gliosis, and abnormalities in the permeability of the BBB. The processes by which HIV causes these pathological conditions are not well understood. To characterize the mechanism by which HIV-1 Tat protein modulates human brain microvascular endothelial cell (HBMEC) functions, we studied the effects of HIV-1 Tat in modulating HBMEC apoptosis and permeability. Treatment of HBMEC with HIV-1 Tat led to Flk-1/KDR and Flt-4 receptor activation and the release of NO. The protein levels of endothelial NO synthase (NOS) and inducible NOS were increased by HIV-1 Tat stimulation. Importantly, HIV-1 Tat caused apoptosis of HBMEC, as evidenced by changes in the cleavage of poly(A)DP-ribose polymerase, DNA laddering, and incorporation of fluorescein into the nicked chromosomal DNA (TUNEL assay). HIV-1 Tat-mediated apoptosis in HBMEC was significantly inhibited in the presence of N-nitro-L-arginine methyl ester (an inhibitor of NOS) and wortmannin (a phosphoinositol 3-kinase inhibitor). Furthermore, HIV-1 Tat treatment significantly increased HBMEC permeability, and pretreatment with both N-nitro-L-arginine methyl ester and wortmannin inhibited the Tat-induced permeability. Taken together, these results indicate that dysregulated production of NO by HIV-1 Tat plays a pivotal role in brain endothelial injury, resulting in the irreversible loss of BBB integrity, which may lead to enhanced infiltration of virus-carrying cells across the BBB.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号