首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   85篇
  免费   6篇
  2017年   2篇
  2016年   1篇
  2015年   3篇
  2014年   1篇
  2013年   2篇
  2012年   5篇
  2011年   6篇
  2010年   4篇
  2009年   1篇
  2008年   3篇
  2007年   1篇
  2006年   4篇
  2005年   4篇
  2003年   7篇
  2002年   5篇
  2001年   2篇
  2000年   4篇
  1999年   3篇
  1998年   7篇
  1996年   1篇
  1992年   2篇
  1991年   1篇
  1989年   4篇
  1988年   4篇
  1986年   3篇
  1985年   1篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
  1972年   1篇
  1969年   1篇
  1967年   1篇
排序方式: 共有91条查询结果,搜索用时 234 毫秒
21.
22.
Our laboratory has developed an animal model to study factors leading to chronic disease in a blunt impacted joint. Studies to date indicate post trauma softening of the impacted joint cartilage, but a limited degree of histological degradation in the tissue. The model utilizes treadmill exercise of the animal post trauma. The hypothesis of the current study was that post trauma exercise helps limit histological and mechanical degradation of the impacted retro-patellar cartilage. The study involved a group of animals with enforced exercise on a treadmill and another group with cage-activity post trauma. The animals were sacrificed after 24 months. Mechanical and histological analyses were performed on the retro-patellar cartilage from each group. The impacted versus contra-lateral, non-impacted retro-patellar cartilage was mechanically softened in the exercise group, but not in the cage-activity group. Histological analyses of the tissue from the cage-activity group indicated that this cartilage had less surface integrity, more ossification/calcification, and more erosion than that in the impacted tissue from the exercise group. These tissue changes may lead to an apparent stiffening effect in the impacted cartilage from the cage-activity group at 24 months post-trauma. Potential relationships between the intensity and frequency of post trauma exercise and the mechanical character and histological degradation of the impacted cartilage need additional study. The study indicates that post-trauma exercise can significantly alter the outcome of a blunt knee joint trauma in this experimental animal model.  相似文献   
23.
24.
高等植物中的磷酸烯醇式丙酮酸羧激酶   总被引:1,自引:0,他引:1  
简要介绍了近年来有关高等植物中磷酸烯醇式丙酮酸羧激酶(PEPCK)的研究进展,并讨论了此酶的结构、功能和调节等方面的问题。  相似文献   
25.
Peripheral arterial disease (PAD) is a common, progressive manifestation of atherothrombotic vascular disease, which should be managed no different to cardiac disease. Indeed, there is growing evidence that PAD patients are a high risk group, although still relatively under-detected and under treated. This is despite the fact that PAD patients are an increased mortality rate comparable to those with pre-existing or established cardiovascular disease [myocardial infarction, stroke]. With a holistic approach to atherothrombotic vascular disease, our management of PAD can only get better.  相似文献   
26.
Higher-order polynomial functions can be used as a constitutive model to represent the mechanical behaviour of biological materials. The goal of this study was to present a method for assessing the fit of a given constitutive three-dimensional material model. Goodness of fit was assessed using multiple parameters including the root mean square error and Hotelling's T 2-test. Specifically, a polynomial model was used to characterise the stress–strain data, varying the number of model terms used (45 combinations of between 3 and 11 terms) and the manner of optimisation used to establish model coefficients (i.e. determining coefficients either by parameterisation of all data simultaneously or averaging coefficients obtained by parameterising individual data trials). This framework for model fitting helps to ensure that a given constitutive formulation provides the best characterisation of biological material mechanics.  相似文献   
27.
28.
The menisci are frequently injured due to both degeneration and traumatic tearing. It has been suggested that the success of a meniscal replacement is dependent on several factors, one of which is the secure fixation and firm attachment of the replacement to the tibial plateau. Therefore, the objectives of the current study were to (1) determine the failure properties of the meniscal horn attachments, and (2) determine the strain distribution over their surfaces. Eight bovine knee joints were used to study the mechanical response of the meniscal attachments. Three meniscal attachments from one knee of each animal were tested in uniaxial tension at 2%/s to determine the load deformation response. During the tests, the samples were marked and local strain distributions were determined with a video extensometer. The linear modulus of the medial anterior attachment (154+/-134 MPa) was significantly less than both the medial posterior (248+/-179 MPa, p=0.0111) and the lateral anterior attachment (281+/-214 MPa, p=0.0007). Likewise, the ultimate strain for the medial anterior attachments (13.5+/-8.8%) was significantly less than the medial posterior (23+/-13%, p<0.0001) and the lateral anterior attachment (20.3+/-11.1%, p=0.0033). There were no significant differences in the structural properties or ultimate stress between the meniscal attachments (p>0.05). No significant differences in ultimate strain or moduli across the surface of the attachments were noted. Based on the data obtained, a meniscal replacement would need different moduli for each of the different attachments. However, the attachments appear to be homogeneous.  相似文献   
29.
Radio frequency energy (RFE) thermal chondroplasty has been a widely-utilized method of cartilage debridement in the past. Little is known regarding its effect on tissue mechanics. This study investigated the acute biomechanical effects of bipolar RFE treatment on human chondromalacic cartilage. Articular cartilage specimens were extracted (n?=?50) from femoral condyle samples of patients undergoing total knee arthroplasty. Chondromalacia was graded with the Outerbridge classification system. Tissue thicknesses were measured using a needle punch test. Specimens underwent pretreatment load-relaxation testing using a spherical indenter. Bipolar RFE treatment was applied for 45?s and the indentation protocol was repeated. Structural properties were derived from the force-time data. Mechanical properties were derived using a fibril-reinforced biphasic cartilage model. Statistics were performed using repeated measures ANOVA. Cartilage thickness decreased after RFE treatment from a mean of 2.61?mm to 2.20?mm in Grade II, II-III, and III specimens (P?相似文献   
30.
The knee is one of the most frequently injured joints in the human body. Approximately 91% of ACL injuries occur during sporting activities, usually from a non-contact event. The most common kinetic scenarios related with ACL injuries are internal twisting of the tibia relative to the femur or combined torque and compression during a hard landing. The hypothesis of this study was that the magnitudes and types of motion observed after ACL rupture would significantly change from the relative joint displacements present just before ACL injury. Compression or torsion experiments were conducted on 7 pairs of knee joints with repetitive tests at increasing intensity until catastrophic failure. ACL injury was documented in all cases at 5.4±2 kN of TF compression or 33±13 Nm of internal tibial torque. The femur displaced posteriorly relative to the tibia in pre-failure and with a higher magnitude in failure tests under both loading conditions. In compression experiments there was internal rotation of the tibia in pre-failure tests, but external rotation of the tibia after the ACL failed. In torsion experiments, failure occurred at 58±19° of internal tibial rotation, and valgus rotation of the femur increased significantly after ACL injury. These new data show that the joint motions can vary in magnitude and direction before and after failure of the ACL. Video-based studies consistently document external rotation of the tibia combined with valgus knee bending as the mechanism of ACL injury although these motions could be occurring after ACL rupture.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号