全文获取类型
收费全文 | 402篇 |
免费 | 53篇 |
专业分类
455篇 |
出版年
2021年 | 13篇 |
2020年 | 7篇 |
2019年 | 12篇 |
2018年 | 8篇 |
2017年 | 6篇 |
2016年 | 5篇 |
2015年 | 10篇 |
2014年 | 16篇 |
2013年 | 14篇 |
2012年 | 18篇 |
2011年 | 21篇 |
2010年 | 17篇 |
2009年 | 19篇 |
2008年 | 19篇 |
2007年 | 14篇 |
2006年 | 10篇 |
2005年 | 23篇 |
2004年 | 15篇 |
2003年 | 9篇 |
2002年 | 16篇 |
2001年 | 9篇 |
2000年 | 8篇 |
1999年 | 10篇 |
1998年 | 8篇 |
1997年 | 7篇 |
1996年 | 5篇 |
1992年 | 5篇 |
1991年 | 9篇 |
1990年 | 10篇 |
1988年 | 5篇 |
1987年 | 6篇 |
1986年 | 4篇 |
1983年 | 5篇 |
1982年 | 5篇 |
1981年 | 3篇 |
1980年 | 6篇 |
1979年 | 4篇 |
1978年 | 4篇 |
1976年 | 5篇 |
1975年 | 4篇 |
1973年 | 6篇 |
1971年 | 2篇 |
1969年 | 2篇 |
1968年 | 4篇 |
1967年 | 3篇 |
1966年 | 4篇 |
1918年 | 2篇 |
1907年 | 2篇 |
1855年 | 6篇 |
1854年 | 2篇 |
排序方式: 共有455条查询结果,搜索用时 14 毫秒
91.
The implications of intergenic polymorphism for major histocompatibility complex evolution 总被引:2,自引:0,他引:2
A systematic survey of six intergenic regions flanking the human HLA-B locus in eight haplotypes reveals the regions to be up to 20 times more polymorphic than the reported average degree of human neutral polymorphism. Furthermore, the extent of polymorphism is directly related to the proximity to the HLA-B locus. Apparently linkage to HLA-B locus alleles, which are under balancing selection, maintains the neutral polymorphism of adjacent regions. For these linked polymorphisms to persist, recombination in the 200-kb interval from HLA-B to TNF must occur at a low frequency. The high degree of polymorphism found distal to HLA-B suggests that recombination is uncommon on both sides of the HLA-B locus. The least-squares estimate is 0.15% per megabase with an estimated range from 0.02 to 0.54%. These findings place strong restrictions on possible recombinational mechanisms for the generation of diversity at the HLA-B. 相似文献
92.
K Ebnet M Hausmann F Lehmann-Grube A Müllbacher M Kopf M Lamers M M Simon 《The EMBO journal》1995,14(17):4230-4239
93.
Jerome C Regier Andreas Zwick Michael P Cummings Akito Y Kawahara Soowon Cho Susan Weller Amanda Roe Joaquin Baixeras John W Brown Cynthia Parr Donald R Davis Marc Epstein Winifred Hallwachs Axel Hausmann Daniel H Janzen Ian J Kitching M Alma Solis Shen-Horn Yen Adam L Bazinet Charles Mitter 《BMC evolutionary biology》2009,9(1):1-21
Background
In the mega-diverse insect order Lepidoptera (butterflies and moths; 165,000 described species), deeper relationships are little understood within the clade Ditrysia, to which 98% of the species belong. To begin addressing this problem, we tested the ability of five protein-coding nuclear genes (6.7 kb total), and character subsets therein, to resolve relationships among 123 species representing 27 (of 33) superfamilies and 55 (of 100) families of Ditrysia under maximum likelihood analysis.Results
Our trees show broad concordance with previous morphological hypotheses of ditrysian phylogeny, although most relationships among superfamilies are weakly supported. There are also notable surprises, such as a consistently closer relationship of Pyraloidea than of butterflies to most Macrolepidoptera. Monophyly is significantly rejected by one or more character sets for the putative clades Macrolepidoptera as currently defined (P < 0.05) and Macrolepidoptera excluding Noctuoidea and Bombycoidea sensu lato (P ≤ 0.005), and nearly so for the superfamily Drepanoidea as currently defined (P < 0.08). Superfamilies are typically recovered or nearly so, but usually without strong support. Relationships within superfamilies and families, however, are often robustly resolved. We provide some of the first strong molecular evidence on deeper splits within Pyraloidea, Tortricoidea, Geometroidea, Noctuoidea and others. Separate analyses of mostly synonymous versus non-synonymous character sets revealed notable differences (though not strong conflict), including a marked influence of compositional heterogeneity on apparent signal in the third codon position (nt3). As available model partitioning methods cannot correct for this variation, we assessed overall phylogeny resolution through separate examination of trees from each character set. Exploration of "tree space" with GARLI, using grid computing, showed that hundreds of searches are typically needed to find the best-feasible phylogeny estimate for these data.Conclusion
Our results (a) corroborate the broad outlines of the current working phylogenetic hypothesis for Ditrysia, (b) demonstrate that some prominent features of that hypothesis, including the position of the butterflies, need revision, and (c) resolve the majority of family and subfamily relationships within superfamilies as thus far sampled. Much further gene and taxon sampling will be needed, however, to strongly resolve individual deeper nodes. 相似文献94.
Control of prostanoid synthesis: role of reincorporation of released precursor fatty acids 总被引:6,自引:0,他引:6
Prostanoid synthesis is limited by the availability of free arachidonic acid. This polyunsaturated fatty acid is liberated by phospholipases and usually is an intermediate of the deacylation-reacylation cycle of membrane phospholipids. In rat peritoneal macrophages, ethylmercurisalicylate (merthiolate) or N-ethylmaleimide (NEM) dose dependently inhibited the incorporation of arachidonic acid into cellular phospholipids, at lower concentrations specifically into phosphatidylcholine. Furthermore, merthiolate could be shown to be a rather selective inhibitor of lysophosphatidylcholine acyltransferase. In contrast, phospholipase A2 activity was not affected over a wide dose range. Consequently, macrophages showed a large increase in prostanoid synthesis (prostaglandin E, prostacyclin and thromboxane) in the presence of both lysophosphatide acyltransferase inhibiting agents. Similar results were obtained with human platelets, in which merthiolate increased the release of thromboxane. Addition of free arachidonic acid also enhanced prostanoid synthesis in macrophages. At optimal concentrations, merthiolate had no further augmenting effect. It is concluded that the rate of prostanoid synthesis is not only controlled by phospholipase A2 activity, but rather by the activity of the reacylating enzymes, mainly lysophosphatide acyltransferase. 相似文献
95.
96.
In this issue of Developmental Cell, Takada et al. (2006) describe a novel lipid modification in Wnt3a. This exciting finding may prove pivotal in our attempts to decipher the mechanisms underlying Wnt secretion. 相似文献
97.
Physiological and Genetic Aspects of Abortive Infection of a Shigella sonnei Strain by Coliphage T7 总被引:4,自引:6,他引:4 下载免费PDF全文
Phage T7 adsorbed to and lysed cells of Shigella sonnei D(2) 371-48, although the average burst size was only 0.1 phage per cell (abortive infection). No mechanism of host-controlled modification was involved. Upon infection, T7 rapidly degraded host deoxyribonucleic acid (DNA) to acid-soluble material. Phage-directed DNA synthesis was initiated normally, but after a few minutes the pool of phage DNA, including the parental DNA, was degraded. Addition of chloramphenicol, at the time of phage infection, prevented both the initiation of phage-directed DNA synthesis and the degradation of parental phage DNA. Addition of chloramphenicol 4.5 min after phage was added permitted the onset of phage-directed DNA synthesis but prevented breakdown of phage DNA. Mutants of T7 (ss(-) mutants) have been isolated which show normal growth in strain D(2) 371-48. Upon mixed infection of this strain with T7 wild type and an ss(-) mutant, infection was abortive; no complementation occurred. The DNA of the ss(-) mutants was degraded in mixed infection like that of the wild type. Revertant mutants which have lost their ability to grow on D(2) 371-48 were isolated from ss(-) mutants; they are, in essence, phenotypically like T7 wild type. Independently isolated revertants of ss(-) mutants did not produce ss(-) recombinants when they were crossed among themselves. When independently isolated ss(-) mutants were crossed with each other, wild-type recombinants were found; ss(-) mutants could then be mapped in a cluster compatible with the length of one cistron. We concluded that T7 codes for an active, chloramphenicol-sensitive function [ss(+) function (for suicide in Shigella)] which leads to the breakdown of phage DNA in the Shigella host. 相似文献
98.
Three genes of a motility operon and their role in flagellar rotary speed variation in Rhizobium meliloti. 总被引:8,自引:0,他引:8 下载免费PDF全文
The peritrichous flagella of Rhizobium meliloti rotate only clockwise and control directional changes of swimming cells by modulating flagellar rotary speed. Using Tn5 insertions, we have identified and sequenced a motility (mot) operon containing three genes, motB, motC, and motD, that are translationally coupled. The motB gene (and an unlinked motA) has been assigned by similarity to the Escherichia coli and Bacillus subtilis homologs, whereas motC and motD are new and without known precedents in other bacteria. In-frame deletions introduced in motB, motC, or motD each result in paralysis. MotD function was fully restored by complementation with the wild-type motD gene. By contrast, deletions in motB or motC required the native combination of motB and motC in trans for restoring normal flagellar rotation, whereas complementation with motB or motC alone led to uncoordinated (jiggly) swimming. Similarly, a motB-motC gene fusion and a Tn5 insertion intervening between motB and motC resulted in jiggly swimming as a consequence of large fluctuations in flagellar rotary speed. We conclude that MotC biosynthesis requires coordinate expression of motB and motC and balanced amounts of the two gene products. The MotC polypeptide contains an N-terminal signal sequence for export, and Western blots have confirmed its location in the periplasm of the R. meliloti cell. A working model suggests that interactions between MotB and MotC at the periplasmic surface of the motor control the energy flux or the energy coupling that drives flagellar rotation. 相似文献
99.
Hausmann S Erdjument-Bromage H Shuman S 《The Journal of biological chemistry》2004,279(12):10892-10900
Schizosaccharomyces pombe Fcp1 is an essential protein serine phosphatase that preferentially dephosphorylates Ser(2) of the RNA polymerase II C-terminal domain (CTD) heptad repeat Y(1)S(2)P(3)T(4)S(5)P(6)S(7). Here we show that: (i) Fcp1 acts distributively during the hydrolysis of substrates containing tandem Ser(2)-PO(4) heptads; (ii) the minimal optimal CTD substrate for Fcp1 is a single heptad of phasing S(5)P(6)S(7)Y(1)S(2)P(3)T(4); and (iii) single alanine mutations of flanking residues Tyr(1) or Pro(3) result in 6-fold decrements in CTD phosphatase activity. Fcp1 belongs to the DXDX(T/V) family of phosphotransferases that act via an acyl-phosphoenzyme intermediate. An alanine scan of 11 conserved positions of S. pombe Fcp1 identifies Thr(174), Tyr(237), Thr(243), and Tyr(249) as important for phosphatase activity. Structure-activity relationships at these positions were determined by introducing conservative substitutions. Our results, together with previous mutational studies, highlight a constellation of 11 amino acids that are conserved in all Fcp1 orthologs and likely comprise the active site. 相似文献
100.
Godinic-Mikulcic V Jaric J Hausmann CD Ibba M Weygand-Durasevic I 《The Journal of biological chemistry》2011,286(5):3396-3404
Aminoacyl-tRNA synthetases (aaRSs) play an integral role in protein synthesis, functioning to attach the correct amino acid with its cognate tRNA molecule. AaRSs are known to associate into higher-order multi-aminoacyl-tRNA synthetase complexes (MSC) involved in archaeal and eukaryotic translation, although the precise biological role remains largely unknown. To gain further insights into archaeal MSCs, possible protein-protein interactions with the atypical Methanothermobacter thermautotrophicus seryl-tRNA synthetase (MtSerRS) were investigated. Yeast two-hybrid analysis revealed arginyl-tRNA synthetase (MtArgRS) as an interacting partner of MtSerRS. Surface plasmon resonance confirmed stable complex formation, with a dissociation constant (K(D)) of 250 nM. Formation of the MtSerRS·MtArgRS complex was further supported by the ability of GST-MtArgRS to co-purify MtSerRS and by coelution of the two enzymes during gel filtration chromatography. The MtSerRS·MtArgRS complex also contained tRNA(Arg), consistent with the existence of a stable ribonucleoprotein complex active in aminoacylation. Steady-state kinetic analyses revealed that addition of MtArgRS to MtSerRS led to an almost 4-fold increase in the catalytic efficiency of serine attachment to tRNA, but had no effect on the activity of MtArgRS. Further, the most pronounced improvements in the aminoacylation activity of MtSerRS induced by MtArgRS were observed under conditions of elevated temperature and osmolarity. These data indicate that formation of a complex between MtSerRS and MtArgRS provides a means by which methanogenic archaea can optimize an early step in translation under a wide range of extreme environmental conditions. 相似文献