首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   218篇
  免费   14篇
  2023年   6篇
  2022年   9篇
  2021年   8篇
  2020年   8篇
  2019年   7篇
  2018年   6篇
  2017年   12篇
  2016年   10篇
  2015年   8篇
  2014年   16篇
  2013年   13篇
  2012年   16篇
  2011年   24篇
  2010年   13篇
  2009年   9篇
  2008年   15篇
  2007年   17篇
  2006年   10篇
  2005年   8篇
  2004年   7篇
  2003年   5篇
  2002年   2篇
  2001年   1篇
  1999年   1篇
  1998年   1篇
排序方式: 共有232条查询结果,搜索用时 390 毫秒
91.
We investigated the effects of exogenous ghrelin on energy levels and tissue histology in skeletal muscle in experimentally lipopolysaccharide (LPS) induced septic rats. Male Wistar albino rats 200–250 g were separated into four groups; Control, LPS (5 mg/kg), Ghrelin (10 nmol/kg i.v.), and ghrelin+LPS. Gastrocnemius muscle tissue was taken and stained using modified Gomori trichrome (MGT), succinic dehydrogenase (SDH), and cytochrome oxidase (COX) and hematoxylin and eosin. In stained sections, histological score value was calculated according to the intensity and the distribution for MGT, SDH and COX stainings. Creatine, creatine phosphate, adenosine triphosphate (ATP), adenosine monophosphate (AMP) levels, and the ratios of AMP/ATP and CreaP/ATP were investigated using high performance liquid chromatography (HPLC) in muscle tissue. Significances between experimental groups were calculated with an analysis of variance (ANOVA) followed by Tukey’s tests. Myopathic changes were seen in the 50% of rats in the LPS group as rounding of muscle fibers and fiber size variation. In the ghrelin+LPS group, ghrelin treatment was reduced damage in skeletal muscle structure. There was no change in creatine or AMP levels between the groups. Ghrelin treatment significantly increased ATP values (P?<?0.01) and improved tissue histology in septic rats. Ratios of both AMP/ATP and CreaP/ATP were found increased in the septic group, but there were decreaments in both the ghrelin and ghrelin-treated septic groups. Ghrelin could play an important role in energy balance and muscle morphology in skeletal muscle during sepsis.  相似文献   
92.
It is quite challenging to find out bioactive molecules in the vast chemical universe. Quinone moiety is a unique structure with a variety of biological properties, particularly in the treatment of cancer. In an effort to develop potent and secure antiproliferative lead compounds, five quinolinequinones ( AQQ1-5 ) described previously have been selected and submitted to the National Cancer Institute (NCI) of Bethesda to envisage their antiproliferative profile based on the NCI Developmental Therapeutics Program. According to the preliminary in vitro single-dose anticancer screening, four of five quinolinequinones ( AQQ2-5 ) were selected for five-dose screening and they displayed promising antiproliferative effects against several cancer types. All AQQs showed a excellent anticancer profile with low micromolar GI50 and TGI values against all leukemia cell lines, some non-small cell lung and ovarian cancer, most colon, melanoma, and renal cancer, and in addition to some breast cancer cell lines. AQQ2-5 reduced the proliferation of all leukemia cell lines at a single dose and five additional doses, as well as some non-small cell lung and ovarian cancer, the majority of colon cancer, melanoma and renal cancer, and some breast cancer cell lines. This motivated us to use in vitro, in silico, and in vivo technologies to further investigate their mode of action. We investigated the in vitro cytotoxic activities of the most promising compounds, AQQ2 and AQQ3 , in HCT-116 colon cancer, MCF7 and T-47D breast cancer, and DU-145 prostate cancer cell lines, and HaCaT human keratinocytes. Concomitantly, IC50 values of AQQ2 and AAQ3 against MCF7 and T-47D cell lines of breast cancer, DU-145 cell lines of prostate cancer, HCT-116 cell lines of colon cancer, and HaCaT human keratinocytes were determined. AQQ2 exhibited anticancer activity through the induction of apoptosis and caused alterations in the cell cycle. In silico pharmacokinetic studies of all analogs have been carried out against ATR, CHK1, WEE1, CDK1, and CDK2. In addition to this, in vitro ADME and in vivo pharmacokinetic profiling for the most effective AAQ ( AAQ2 ) have been studied.  相似文献   
93.
Platelet activation state changes by exercise. The effect of exercise time on platelet activation state and formation of platelet–neutrophil aggregates are not known yet. In this study the effect of exercise and time of day were examined on platelet activity with platelet–neutrophil aggregates. Ten moderately active males aged 27± 1.63 (mean±S.D.) years completed sub-maximal (70% VO2max) exercise trials for 30 min. Blood pressure (BP) was recorded. Venous blood samples were obtained at rest, immediately post-exercise and after 30 min of recovery. Whole blood was analysed for haematocrit (Hct), haemoglobin (Hb), platelet count (PC), mean platelet count (MPV) and platelet aggregation (PA). Platelet–neutrophil aggregates and beta-thromboglobulin (β-TG) levels were assayed. Platelet count showed significant increase after morning exercise ((236± 32)×109 l−1 versus (202± 34)×109 l−1 baseline, p < 0.05). Exercise resulted in significantly lower MPV after the evening exercise (9.16± 0.5 fl versus 9.65± 0.36 fl, p < 0.05). Platelet aggregation by adenosine diphosphate (ADP) decreased after morning exercise and the recovery aggregation levels were significantly different at two different times of the day (68± 20% a.m. versus 80± 12% p.m., p < 0.05). It was also showed that platelet–neutrophil aggregates increased significantly from baseline after both exercises. Exercise-induced platelet–neutrophil aggregates were higher in the evening (10.7± 1.3% p.m. versus 6.4± 1.8% a.m., p < 0.0001). It is therefore concluded that besides platelet–platelet aggregation, exercise can cause platelet– neutrophil aggregates. In addition, time of day has an effect on platelet activation related events. Circadian variations of physiological parameters may have an effect on thrombus formation by platelet activation. (Mol Cell Biochem xxx: 119–124, 2005)  相似文献   
94.
95.
The effect of glutamine on radiation-induced organ damage   总被引:4,自引:0,他引:4  
Radiation enteritis is a significant clinical problem in patients receiving ionizing radiation directed to the abdomen or pelvis. Although radiation is aimed to be directed against the malignant tissue, adjacent healthy tissues are also affected. The small intestine is the most sensitive organ to radiation. The present study was undertaken to investigate the possible protective effect of glutamine against radiation-induced intestinal, hepatic and pancreatic toxicity. Rats received 1 g/kg/day glutamine for seven days before irradiation and continued for three days after irradiation until sacrifice. Then intestinal, pancreatic and hepatic myeloperoxidase (MPO) activities, malondialdehyde (MDA) levels and caspase-3 activities of the sacrificed rats were measured. Irradiation significantly increased the intestinal and pancreatic MPO and caspase-3 activities and MDA levels in comparison to sham group. Glutamine treatment significantly decreased this elevation. Histopathological examination revealed that the intestinal mucosal structure was preserved and pancreatic inflammation decreased in the glutamine treated group. In irradiation group, NF-kappaB over expression was detected. There was no significant difference in histopathological and biochemical examinations of the liver between the groups. In conclusion, glutamine has beneficial effects on intestinal and pancreatic damage in abdominal irradiation through the inflammatory process and apoptosis.  相似文献   
96.
Host defense mechanisms are impaired in patients with congenital neutrophil (polymorphonuclear neutrophils (PMN)) defects. Impaired PMN chemotaxis is observed in localized aggressive periodontitis (LAP), a familial disorder characterized by destruction of the supporting structures of dentition. In the present studies, we sought evidence for molecular events underlying this aberrant human PMN phenotype. To this end, PMN transendothelial migration and superoxide anion generation were assessed with LAP patients and asymptomatic family members, as well as patients with other chronic mucosal inflammation. PMN from LAP patients showed decreased transmigration across vascular endothelial monolayers (18 +/- 12% of control, n = 4) and increased superoxide anion generation (358 +/- 37%, p = 0.003). Gene expression was analyzed using oligonucleotide microarrays and fluorescence-based kinetic PCR. cDNA microarray and kinetic-PCR analysis revealed diminished RNA expression of leukocyte-type diacylglycerol (DAG) kinase alpha in PMN from LAP patients (4.6 +/- 1.7 relative units, n = 6, p = 0.007) compared with asymptomatic individuals (51 +/- 27 relative units, n = 7). DAG kinase activity was monitored by DAG phosphorylation and individual DAG molecular species were quantified using liquid chromatography and tandem mass spectrometry-based lipidomics. DAG kinase activity was also significantly decreased (73 +/- 2%, p = 0.007) and correlated with increased accumulation of 1,2-diacyl-sn-3-glycerol substrates (p = 0.01). These results implicate defects in both PMN transendothelial migration and PMN DAG kinase alpha signaling as disordered functions in LAP. Moreover, they identify a potential molecular lesion in PMN signal transduction that may account for their aberrant responses and tissue destruction in this disease.  相似文献   
97.
Bacillus thuringiensis (Bt) is a gram-positive, spore-forming bacterium and it produces insecticidal crystal (cry) proteins during sporulation. Because the genetic diversity and toxic potential of Bt strains differ from region to region, strains have been collected and characterized all over the world. The aim of this study is to isolate Bt strains in grain-related habitats in Turkey and to characterize them on the basis of crystal morphology, cry gene content, and chromosomal and plasmid DNA profiles. Four approaches were taken analysis with phase contrast (PC) microscopy, polymerase chain reaction (PCR), pulsed field gel electrophoresis (PFGE) and plasmid isolation. Ninety-six samples were collected from Central Anatolia and the Aegean region. Bt was isolated from 61 of 96 samples (63.5) and 500 Bt-like colonies were obtained. One hundred and sixty three of the colonies were identified as Bt based on cry protein formation using PC microscopy. Among the examined colonies, the overall proportion identified (as Bt index) was 0.33. We found that 103 isolates were positive for the five different cry genes (cry1, cry2, cry3, cry4 and cry9) examined with PCR. In addition, plasmid profiling of 37 cry gene-positive isolates indicated that the 15 kb plasmid band was present in all isolates; however, 11 of 37 isolates had more than one plasmid band at different sizes. Finally, chromosomal DNA profiling by PFGE gave rise to different DNA patterns for isolates containing the same cry gene which suggests a high level of diversity among the Bt strains isolated.  相似文献   
98.
The pyridoxal 5‐phosphate (PLP) cofactor is a significant organic molecule in medicinal chemistry. It is often found covalently bound to lysine residues in proteins to form PLP dependent enzymes. An example of this family of PLP dependent enzymes is γ‐aminobutyric acid aminotransferase (GABA‐AT) which is responsible for the degradation of the neurotransmitter GABA. Its inhibition or inactivation can be used to prevent the reduction of GABA concentration in brain which is the source of several neurological disorders. As a test case for PLP dependent enzymes, we have performed molecular dynamics simulations of GABA‐AT to reveal the roles of the protein residues and its cofactor. Three different states have been considered: the apoenzyme, the holoenzyme, and the inactive state obtained after the suicide inhibition by vigabatrin. Different protonation states have also been considered for PLP and two key active site residues: Asp298 and His190. Together, 24 independent molecular dynamics trajectories have been simulated for a cumulative total of 2.88 µs. Our results indicate that, unlike in aqueous solution, the PLP pyridine moiety is protonated in GABA‐AT. This is a consequence of a pKa shift triggered by a strong charge–charge interaction with an ionic “diad” formed by Asp298 and His190 that would help the activation of the first half‐reaction of the catalytic mechanism in GABA‐AT: the conversion of PLP to free pyridoxamine phosphate (PMP). In addition, our MD simulations exhibit additional strong hydrogen bond networks between the protein and PLP: the phosphate group is held in place by the donation of at least three hydrogen bonds while the carbonyl oxygen of the pyridine ring interacts with Gln301; Phe181 forms a π–π stacking interaction with the pyridine ring and works as a gate keeper with the assistance of Val300. All these interactions are hypothesized to help maintain free PMP in place inside the protein active site to facilitate the second half‐reaction in GABA‐AT: the regeneration of PLP‐bound GABA‐AT (i.e., the holoenzyme). Proteins 2016; 84:875–891. © 2016 Wiley Periodicals, Inc.  相似文献   
99.
100.
Neurochemical Research - Acetazolamide (ACZ), a sulfonamide carbonic anhydrase (CA) inhibitor, was first introduced into medical use as a diuretic in the1950s. Shortly after its introduction, its...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号