首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   451篇
  免费   81篇
  2021年   6篇
  2019年   7篇
  2016年   6篇
  2015年   12篇
  2014年   10篇
  2013年   9篇
  2012年   13篇
  2011年   15篇
  2010年   14篇
  2009年   10篇
  2008年   14篇
  2007年   14篇
  2006年   12篇
  2005年   8篇
  2004年   13篇
  2003年   11篇
  2002年   16篇
  2001年   16篇
  2000年   17篇
  1999年   8篇
  1998年   5篇
  1997年   7篇
  1996年   7篇
  1995年   8篇
  1993年   5篇
  1992年   19篇
  1991年   14篇
  1990年   13篇
  1989年   11篇
  1988年   13篇
  1987年   18篇
  1986年   12篇
  1985年   16篇
  1984年   7篇
  1983年   8篇
  1982年   5篇
  1981年   12篇
  1977年   9篇
  1976年   7篇
  1975年   6篇
  1974年   5篇
  1973年   4篇
  1972年   4篇
  1970年   5篇
  1969年   11篇
  1968年   7篇
  1966年   7篇
  1964年   4篇
  1963年   5篇
  1961年   4篇
排序方式: 共有532条查询结果,搜索用时 31 毫秒
21.
An experiment is described in which the magnitude of N transferred from damaged white clover roots to perennial ryegrass was determined, using 15N labelling of the grass plant. There was no effect on the growth and N-fixation of the clover plants after removing part of the root system. The 15N data suggested that N had been acquired by all grass plants, even in plants grown alone with no further N supplied after labelling. However, after quantifying the mobile and stored N pools of the grass plants it was evident that significant transfer of N from clover to grass only took place from damaged clover roots. Dilution of the atom% 15N in the roots of the grass plants grown alone, and in association with undamaged clover roots, was explained by remobilisation of N within the plant.  相似文献   
22.
23.
24.
During C4 photosynthesis, CO2 is released in bundle-sheath cells by decarboxylation of C4 acids and then refixed via ribulose-1,5-bisphosphate carboxylase. In this study we examined the efficiency of this process by determining the proportion of the released CO2 that diffuses back to mesophyll cells instead of being refixed. This leak of CO2 was assessed by determining the amount of 14CO2 released from leaves during a chase in high [12CO2] following a 70-s pulse in 14CO2. A computer-based analysis of the time-course curve for 14CO2 release indicated a first-order process and provided an estimate of the initial velocity of 14CO2 release from leaves. From this value and the net rate of photosynthesis determined from the 14CO2 fixed in the pulse, the CO2 leak rate from bundle-sheath cells (expressed as a percentage of the rate of CO2 production from C4 acids) could be deduced. For nine species of Gramineae representing the different subgroups of C4 plants and two NAD-malic enzyme-type dicotyledonous species, the CO2 leak ranged between 8 and 14%. However, very high CO2 leak rates (averaging about 27%) were recorded for two NADP-malic enzyme-type dicotyledonous species of Flaveria. The results are discussed in terms of the efficiency of C4 photosynthesis and observed quantum yields.  相似文献   
25.
These studies provide further information regarding the mechanism of the light/dark-mediated regulation of pyruvate,Pi dikinase in leaves. It is shown that a catalysis-linked phosphorylation of pyruvate,Pi dikinase can be demonstrated following incubation of the enzyme with [32P]phosphoenolpyruvate or [beta-32P]ATP plus Pi, that the enzyme-bound phosphate is located on a histidine residue, and that this phosphate is retained during ADP-mediated inactivation. Further evidence is provided that phosphorylation of this histidine is a prerequisite for ADP-mediated inactivation through phosphorylation of a threonine residue from the beta-phosphate of ADP. It is demonstrated that diethylpyrocarbonate (which forms a derivative with histidine residues) prevents [32P]phosphoenolpyruvate-dependent labeling (catalytic labeling) and [beta-32P]ADP-dependent labeling (inactivation labeling) of the enzyme. In addition, it is demonstrated that oxalate, an analog of pyruvate, competitively inhibits ADP-dependent inactivation with respect to ADP. The significance of these results is discussed with regard to the mechanism of regulation of pyruvate,Pi dikinase in vivo.  相似文献   
26.
Two of the three metabolic subtypes of species utilizing C4-pathway photosynthesis are defined by high activities of either NADP malic enzyme (NADP malic enzyme type) or a coenzyme A (CoA)- and acetyl-CoA-activated NAD malic enzyme (NAD malic enzyme type). These enzymes function to decarboxylate malate as an integral part of the photosynthetic process. Leaves of NADP malic enzyme-type species also contain significant NAD-dependent malic enzyme activity. The purpose of the present study was to examine the nature and photosynthetic role of this activity. With Zea mays, this NAD-dependent activity was found to vary widely in fresh leaf extracts. Incubating extracts at 25 °C resulted in a disproportionate increase in NAD activity so that the final ratio of NADP to NAD activity was always about 5. Strong evidence was provided that the NADP and NAD malic enzyme activities in Z. mays extracts were catalyzed by the same enzyme. These activities remained associated during purification and were coincident after polyacrylamide gel electrophoresis. The pH optimum for NAD-dependent activity was about 7.1, compared with 8.3 for NADP malic enzyme activity. Other properties of the NAD-dependent activity are described, a particularly notable feature being the inhibition of this activity by less than 1 μm NADP and NADPH. Evidence is provided that the NADP malic enzyme of several other NADP malic enzyme-type C4 species also has associated activity toward NAD. We concluded that the NAD-dependent malic enzyme activity would have no significant function in photosynthesis.  相似文献   
27.
The envelopes of elementary bodies of Chlamydia spp. consist largely of disulfide-cross-linked major outer membrane protein (MOMP) and two cysteine-rich proteins (CRPs). The MOMP gene of Chlamydia psittaci 6BC has been sequenced previously, and the genes encoding the small and large CRPs from this strain were cloned and sequenced in this study. The CRP genes were found to be tandemly arranged on the chlamydial chromosome but could be independently expressed in Escherichia coli. The deduced 87-amino-acid sequence of the small-CRP gene (envA) contains 15 cysteine residues, a potential signal peptide, and a potential signal peptidase II-lipid modification site. Hydropathy plot and conformation analysis of the small-CRP amino acid sequence indicated that the protein was unlikely to be associated with a membrane. However, the small CRP was specifically labeled in host cells incubated with [3H]palmitic acid and may therefore be associated with a membrane through a covalently attached lipid portion of the molecule. The deduced 557-amino-acid sequence of the large-CRP gene (envB) contains 37 cysteine residues and a single putative signal peptidase I cleavage site. In one recombinant clone the large CRP appeared to be posttranslationally cleaved at two sites, forming a doublet in a manner similar to the large-CRP doublet made in native C. psittaci 6BC. Comparison of the deduced amino acid sequences of the CRPs from chlamydial strains indicated that the small CRP is moderately conserved, with 54% identity between C. psittaci 6BC and Chlamydia trachomatis, and the large CRP is highly conserved, with 71% identity between C. psittaci and C. trachomatis and 85% identity between C. psittaci 6BC and Chlamydia pneumoniae. The positions of the cysteine residues in both CRPs are highly conserved in Chlamydia spp. From the number of cysteine residues in the MOMP and the CRPs and the relative incorporation of [35S]cysteine into these proteins, it was calculated that the molar ratio of C. psittaci 6BC elementary body envelope proteins is about one large-CRP molecule to two small-CRP molecules to five MOMP molecules.  相似文献   
28.
A technique is reported for the long-term application of surface electrodes for ambulatory electromyographic (EMG) recording. Prior to electrode application the surrounding skin is lightly painted with tincture of benzoin. This treatment improves adherence to the skin of disposable electrodes and electrode attachment collars, reduces skin trauma associated with electrode removal, and minimizes sensitivity to electrode adhesives.This research was supported in part by NIH grant No. NS25114.  相似文献   
29.
Maize mesophyll chloroplasts loaded with radioactively labeled 3-phosphoglycerate or phosphoenolpyruvate exchange these compounds for externally provided inorganic phosphate, 3-phosphoglycerate, phosphoenolpyruvate, and dihydroxyacetone phosphate. These exchanges are inhibited by pyridoxal phosphate. 3-Phosphoglycerate uptake, which leads to accumulation of this substance in the stroma, is competitively inhibited by inorganic phosphate and phosphoenolpyruvate. These results are consistent with the transport of 3-phosphoglycerate, phosphoenolpyruvate, inorganic phosphate, and dihydroxyacetone phosphate being mediated by a common carrier (the phosphate translocator). The activation energy of 3-phosphoglycerate uptake as determined from its temperature dependence is 19.5 kcal (4–15 °C). In isolated chloroplasts malate and phosphoenolpyruvate production from oxalacetate and pyruvate, respectively, is inhibited by 3-phosphoglycerate, the extent of inhibition being dependent on the relative concentrations of inorganic phosphate and 3-phosphoglycerate. We propose that 3-phosphoglycerate from bundle-sheath cells may serve as a feedback regulator of mesophyll cell photosynthesis.  相似文献   
30.
Identification of a major envelope protein in Chlamydia spp.   总被引:24,自引:11,他引:13       下载免费PDF全文
A major cell envelope protein of Chlamydia psittaci with a molecular weight of approximately 43,000 was identified and partially characterized. It was present at all stages of the C. psittaci developmental cycle. A major protein with a similar molecular weight was also observed in two Chlamydia trachomatis strains.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号