首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   520篇
  免费   84篇
  2021年   9篇
  2019年   7篇
  2016年   7篇
  2015年   13篇
  2014年   15篇
  2013年   15篇
  2012年   20篇
  2011年   26篇
  2010年   25篇
  2009年   13篇
  2008年   16篇
  2007年   19篇
  2006年   16篇
  2005年   8篇
  2004年   16篇
  2003年   12篇
  2002年   18篇
  2001年   16篇
  2000年   17篇
  1999年   8篇
  1998年   7篇
  1997年   6篇
  1996年   7篇
  1995年   9篇
  1994年   5篇
  1993年   5篇
  1992年   19篇
  1991年   14篇
  1990年   13篇
  1989年   11篇
  1988年   13篇
  1987年   19篇
  1986年   12篇
  1985年   16篇
  1984年   7篇
  1983年   8篇
  1982年   5篇
  1981年   12篇
  1977年   9篇
  1976年   8篇
  1975年   6篇
  1974年   5篇
  1972年   4篇
  1970年   5篇
  1969年   11篇
  1968年   7篇
  1966年   7篇
  1964年   4篇
  1963年   5篇
  1961年   4篇
排序方式: 共有604条查询结果,搜索用时 15 毫秒
141.
Site-directed mutagenesis was used to generate three mutations in the uncB gene encoding the a-subunit of the F0 portion of the F0F1-ATPase of Escherichia coli. These mutations directed the substitution of Arg-210 by Gln, or of His-245 by Leu, or of both Lys-167 and Lys-169 by Gln. The mutations were incorporated into plasmids carrying all the structural genes encoding the F0F1-ATPase complex and these plasmids were used to transform strain AN727 (uncB402). Strains carrying either the Arg-210 or His-245 substitutions were unable to grow on succinate as sole carbon source and had uncoupled growth yields. The substitution of Lys-167 and Lys-169 by Gln resulted in a strain with growth characteristics indistinguishable from a normal strain. The properties of the membranes from the Arg-210 or His-245 mutants were essentially identical, both being proton impermeable and both having ATPase activities resistant to the inhibitor DCCD. Furthermore, in both mutants, the F1-ATPase activities were inhibited by about 50% when bound to the membranes. The membrane activities of the mutant with the double lysine change were the same as for a normal strain. The results are discussed in relation to a previously proposed model for the F0 (Cox, G.B., Fimmel, A.L., Gibson, F. and Hatch, L. (1986) Biochim. Biophys. Acta 849, 62–69).  相似文献   
142.
The microbial production of alpha-amylase from Bacillus amyloliquefaciens was investigated. The microorganism was grown using media containing glucose or maltose at 37 degrees C and under aerobic conditions in a 16-L fermentor. The alpha-amylase synthesis from maltose was not found to be inducible but was found to be subject to catabolite repression. The maltose uptake rate was observed to be the rate-limiting step compared to the conversion rate of maltose to glucose by intracellular alpha-glucosidase. The alpha-amylase activity achieved with maltose as a substrate was higher than that achieved with glucose. A slower growth rate and a higher cell density were obtained with maltose. The enzyme production pattern depended upon the nutrient composition of the medium.  相似文献   
143.
The mechanism of inhibition of phosphatidylcholine biosynthesis by okadaic acid was investigated in suspension cultures of isolated rat hepatocytes. Cells were pulsed with [methyl-3H]choline and chased in the absence or presence of 1 microM okadaic acid for up to 120 min. Phosphatidylcholine biosynthesis was inhibited after 15 min of chase. To see if okadaic acid altered the degree of phosphorylation of cytidylyltransferase (CT), hepatocytes were incubated with 32P(i) and chased in the absence or presence of okadaic acid. Okadaic acid caused a rapid (within 15 min) increase in the phosphorylation state of the cytosolic enzyme. Two-dimensional peptide map analysis revealed an increase in the phosphorylation of several peptides in okadaic acid-treated hepatocytes compared with controls. After 15 min of incubation of hepatocytes with okadaic acid, membrane CT activity was decreased and a corresponding increase in cytosolic CT activity was observed. In hepatocytes incubated with okadaic acid and oleate a correlation between membrane CT activity, diacylglycerol level, and phosphatidylcholine biosynthesis was observed. These data suggest that the concentration of diacylglycerol is responsible for the increase in membrane CT activity and subsequently phosphatidylcholine biosynthesis in oleate-treated cells. We postulate that the okadaic acid-induced decrease in phosphatidylcholine biosynthesis is due to an increase in the phosphorylation state of CT which promotes a translocation of CT activity from the membranes to the cytosol.  相似文献   
144.
Effects of adenylates on the activity of mitochondrial NAD-malic enzyme from NAD-malic-enzyme (NAD-ME)-type and phosphoenolpyruvate-carboxykinase-(PKC)-type C4 plants are examined. At physiological concentrations, ATP, ADP, and AMP all inhibit the enzyme from Atriplex spongiosa and Panicum miliaceum (NAD-ME-type plants), with ATP the most inhibitory species. The degree of inhibition is greater with subsaturating levels of activator, malate, and Mn2+. NAD-malic enzyme from Urochloa panicoides (PCK-type) is activated by ATP (up to 10-fold) and inhibited by ADP and AMP. These effects are discussed in relation to regulation of C4 photosynthesis.  相似文献   
145.
146.
147.
The genetic determinants of enterobacterial common antigen (ECA) include the rfe and rff genes located between ilv and cya near min 85 on the Escherichia coli chromosome. The rfe-rff gene cluster of E. coli K-12 was cloned in the cosmid pHC79. The cosmid clone complemented mutants defective in the synthesis of ECA due to lesions in the rfe, rffE, rffD, rffA, rffC, rffT, and rffM genes. Restriction endonuclease mapping combined with complementation studies of the original cosmid clone and six subclones revealed the order of genes in this region to be rfe-rffD/rffE-rffA/rffC-rffT-rffM . The rfe gene was localized to a 2.54-kilobase ClaI fragment of DNA, and the complete nucleotide sequence of this fragment was determined. The nucleotide sequencing data revealed two open reading frames, ORF-1 and ORF-2, located on the same strand of DNA. The putative initiation codon of ORF-1 was found to be 570 nucleotides downstream from the termination codon of rho. ORF-1 and ORF-2 specify putative proteins of 257 and 348 amino acids with calculated Mr values of 29,010 and 39,771, respectively. ORF-1 was identified as the rfe gene since ORF-1 alone was able to complement defects in the synthesis of ECA and 08-side chain synthesis in rfe mutants of E. coli. Data are also presented which suggest the possibility that the rfe gene is the structural gene for the tunicamycin sensitive UDP-GlcNAc:undecaprenylphosphate GlcNAc-1-phosphate transferase that catalyzes the synthesis of GlcNAc-pyrophosphorylundecaprenol (lipid I), the first lipid-linked intermediate involved in ECA synthesis.  相似文献   
148.
Berberine (BBR) has been shown to exhibit protective effects against diabetes and dyslipidemia. Previous studies have indicated that BBR modulates lipid metabolism and inhibits hepatic gluconeogensis by decreasing expression of Hepatocyte Nuclear Factor-4α (HNF-4α). However, the mechanism involved in this process was unknown. In the current study, we examined the mechanism of how BBR attenuates hepatic gluconeogenesis and the lipid metabolism alterations observed in type 2 diabetic (T2D) mice and in palmitate (PA)-incubated HepG2 cells. Treatment with BBR for 4 weeks improve all biochemical parameters compared to T2D mice. Treatment of T2D mice for 4 weeks or treatment of PA-incubated HepG2 cells for 24 h with BBR decreased expression of HNF-4α and the microRNA miR122, the key gluconeogenesis enzymes Phosphoenolpyruvate carboxykinase (PEPCK) and Glucose-6-phosphatase (G6Pase) and the key lipid metabolism proteins Sterol response element binding protein-1 (SREBP-1), Fatty acid synthase-1 (FAS-1) and Acetyl-Coenzyme A carboxylase (ACCα) and increased Carnitine palmitoyltransferase-1(CPT-1) compared to T2D mice or PA-incubated HepG2 cells. Expression of HNF-4α in HepG2 cells increased expression of gluconeogenic and lipid metabolism enzymes and BBR treatment or knock down of miR122 attenuated the effect of HNF-4α expression. In contrast, BBR treatment did not alter expression of gluconeogenic and lipid metabolism enzymes in HepG2 cells with knockdown of HNF-4α. In addition, miR122 mimic increased expression of gluconeogenic and lipid metabolism enzymes in HepG2 cells with knockdown of HNF-4α. These data indicate that miR122 is a critical regulator in the downstream pathway of HNF-4α in the regulation of hepatic gluconeogenesis and lipid metabolism in HepG2 cells. The effect of BBR on hepatic gluconeogenesis and lipid metabolism is mediated through HNF-4α and is regulated downstream of miR122. Our data provide new evidence to support HNF-4α and miR122 regulated hepatic gluconeogenesis and lipid metabolism as promising therapeutic targets for the treatment of T2D.  相似文献   
149.
150.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号