首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   518篇
  免费   18篇
  2022年   2篇
  2021年   6篇
  2020年   2篇
  2019年   3篇
  2018年   4篇
  2017年   7篇
  2016年   8篇
  2015年   8篇
  2014年   17篇
  2013年   21篇
  2012年   26篇
  2011年   28篇
  2010年   15篇
  2009年   13篇
  2008年   27篇
  2007年   20篇
  2006年   25篇
  2005年   37篇
  2004年   47篇
  2003年   29篇
  2002年   29篇
  2001年   31篇
  2000年   23篇
  1999年   23篇
  1998年   5篇
  1997年   2篇
  1996年   6篇
  1995年   4篇
  1994年   2篇
  1993年   1篇
  1992年   7篇
  1991年   8篇
  1990年   10篇
  1989年   9篇
  1988年   4篇
  1987年   3篇
  1986年   5篇
  1985年   4篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1976年   2篇
  1974年   1篇
  1971年   2篇
  1970年   3篇
  1968年   1篇
  1965年   1篇
排序方式: 共有536条查询结果,搜索用时 15 毫秒
121.
Gibels were exposed to cadmium in their aquarium at a concentration of 10 micrograms Cd/l for up to 39 weeks. Distributions of cadmium, copper and zinc in the liver soluble fraction were determined along with sulfur by high performance liquid chromatography-inductively coupled argon plasma-atomic emission spectrometry. Cadmium was sequestered by the two major isoforms of gibel metallothionein as in the case of cadmium injected intraperitoneally into gibel. Several peaks with cadmium, copper, zinc and sulfur were observed other than the two major isoforms and their relative ratios were different between the control and cadmium-exposed fishes.  相似文献   
122.
The complete amino acid sequences of ribosomal proteins S11 from the Gram-positive eubacterium Bacillus stearothermophilus and of S19 from the archaebacterium Halobacterium marismortui have been determined. A search for homologous sequences of these proteins revealed that they belong to the ribosomal protein S11 family. Homologous proteins have previously been sequenced from Escherichia coli as well as from chloroplast, yeast and mammalian ribosomes. A pairwise comparison of the amino acid sequences showed that Bacillus protein S11 shares 68% identical residues with S11 from Escherichia coli and a slightly lower homology (52%) with the homologous chloroplast protein. The halophilic protein S19 is more related to the eukaryotic (45–49%) than to the eubacterial counterparts (35%)  相似文献   
123.
GTP cyclohydrolase I, an enzyme that catalyzes the first step in the biosynthetic pathway of tetrahydrobiopterin, has been purified about 38,000-fold to apparent homogeneity from rat liver extract with a yield of 5%. The molecular weight of the enzyme was estimated to be 300,000 by gel filtration on Ultrogel AcA 34. The purified enzyme gave a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis at a position corresponding to a molecular weight of 30,000. N-terminal amino acid sequence analysis gave a single amino acid at every step of the Edman degradation up to residue 10. These results suggest that the enzyme is probably a homopolymer. The enzyme showed positive cooperativity with a Hill coefficient of 2.4 at a substrate (GTP) concentration of 10-50 microM. The Vmax value of the enzyme was 45 nmol/min.mg protein. The GTP concentration producing half-maximal velocity was 30 microM at a KCl concentration of 0.1 M. This value increased as the KCl concentration rose, without any change in Vmax or Hill number. Biosynthesis of tetrahydrobiopterin may be controlled by the intracellular level of GTP.  相似文献   
124.
The tissue in the palatal region can be divided into the hard and the soft palates, each having a specialized function such as occlusion, speech, or swallowing. Therefore, an understanding of the mechanism of palatogenesis in relation to the function of each region is important. However, in comparison with the hard palate, there is still a lack of information about the mechanisms of soft palate development. In this study, the authors investigated the contribution of cranial neural crest (CNC) cells to development of both hard and soft palates. They also demonstrated a unique pattern of periostin expression during soft palate development, which was closely related to that of collagen type I (Col I) in palatine aponeurosis. Furthermore, organ culture analysis showed that exogenous transforming growth factor-β (TGF-β) induced the expression of both periostin and Col I. These novel patterns of expression in the extracellular matrix (ECM) induced by CNC cells suggest that these cells may help to determine the character of both the hard and soft palates through ECM induction. TGF-β signaling appears to be one of the mediators of Col I and periostin expression in the formation of functional structures during soft palate development.  相似文献   
125.
Brown adipose tissue (BAT) is a key tissue for energy expenditure via fat and glucose oxidation for thermogenesis. In this study, we demonstrate that the myostatin/activin receptor IIB (ActRIIB) pathway, which serves as an important negative regulator of muscle growth, is also a negative regulator of brown adipocyte differentiation. In parallel to the anticipated hypertrophy of skeletal muscle, the pharmacological inhibition of ActRIIB in mice, using a neutralizing antibody, increases the amount of BAT without directly affecting white adipose tissue. Mechanistically, inhibition of ActRIIB inhibits Smad3 signaling and activates the expression of myoglobin and PGC-1 coregulators in brown adipocytes. Consequently, ActRIIB blockade in brown adipose tissue enhances mitochondrial function and uncoupled respiration, translating into beneficial functional consequences, including enhanced cold tolerance and increased energy expenditure. Importantly, ActRIIB inhibition enhanced energy expenditure only at ambient temperature or in the cold and not at thermoneutrality, where nonshivering thermogenesis is minimal, strongly suggesting that brown fat activation plays a prominent role in the metabolic actions of ActRIIB inhibition.  相似文献   
126.
127.
BK polyomavirus (BKV) is ubiquitous among humans, usually infecting them asymptomatically during childhood. BKV persists in renal tissue of individuals and their progeny are excreted in urine, particularly in immunocompromised patients. JC virus, another human polyomavirus, has been considered to be transmitted from parents to children during prolonged cohabitation. However, BKV has been supposed to be transmitted not only within but also outside the family. In the present study, to clarify this possibility, we analyzed phylogenetically 35 BKV which were excreted in the urine by Japanese children and adults undergoing stem cell transplantation. Subtypes I, III and IV were detected in 15, two and one children and in 15, one and one adults, respectively. Among 15 subtype I isolates from children, three, four and eight belonged to subgroups Ia, Ib-1 and Ic, respectively. All the three children from whom Ia was detected were less than 9 years old. In contrast in the adults, three subtype I belonged to Ib-1 and the other 12 to Ic. These findings may reflect the recent transmission of BKV Ia strains to Japanese children.  相似文献   
128.
While mitochondria are renowned for their role in energy production, they also perform several other integral functions within the cell. Thus, it is not surprising that mitochondrial dysfunction can negatively impact cell viability. Although mitochondria have received an increasing amount of attention in recent years, there is still relatively little information about how proper maintenance of mitochondria and its genomes is achieved. The Neurospora crassa mus-10 mutant was first identified through its increased sensitivity to methyl methanesulfonate (MMS) and was thus believed to be defective in some aspect of DNA repair. Here, we report that mus-10 harbors fragmented mitochondria and that it accumulates deletions in its mitochondrial DNA (mtDNA), suggesting that the mus-10 gene product is involved in mitochondrial maintenance. Interestingly, mus-10 begins to senesce shortly after deletions are visualized in its mtDNA. To uncover the function of MUS-10, we used a gene rescue approach to clone the mus-10 gene and discovered that it encodes a novel F-box protein. We show that MUS-10 interacts with a core component of the Skp, Cullin, F-box containing (SCF) complex, SCON-3, and that its F-box domain is essential for its function in vivo. Thus, we provide evidence that MUS-10 is part of an E3 ubiquitin ligase complex involved in maintaining the integrity of mitochondria and may function to prevent cellular senescence.THE mus-10 mutant was isolated from a screen aimed at identifying Neurospora crassa strains that were sensitive to MMS and therefore likely to lack proper DNA repair mechanisms (Kafer and Perlmutter 1980). Epistasis analyses involving mus-10 suggested that it belonged to the uvs-6 epistasis group, which functions in recombination repair (Kafer and Perlmutter 1980; Kafer 1983). However, mus-10 did not display several phenotypes common to other members of the uvs-6 epistasis group: chromosomal instability, a high sensitivity to histidine, and the inability to produce viable ascospores in homozygous crosses (Newmeyer et al. 1978; Newmeyer and Galeazzi 1978; Kafer and Perlmutter 1980; Kafer 1981; Schroeder 1986; Watanabe et al. 1997; Handa et al. 2000; Sakuraba et al. 2000). Furthermore, the frequencies of spontaneous and radiation-induced mutation observed in mus-10 were similar to those of a wild-type strain (Kafer 1981). Past efforts to uncover the nature of these discrepancies or the function of the mus-10 gene product have been uninformative.The majority of cellular ATP is produced in mitochondria through aerobic respiration, which couples electron flow through respiratory complexes within the mitochondrial inner membrane with oxidative phosphorylation. Besides their role in ATP synthesis, mitochondria are also involved in many other cellular processes including beta-oxidation (Bartlett and Eaton 2004), calcium homeostasis (Gunter et al. 2004; Rimessi et al. 2008), production of iron-sulfur clusters (Zheng et al. 1998; Gerber and Lill 2002; Lill and Muhlenhoff 2005; Rouault and Tong 2005), and apoptosis (Green 2005; Antignani and Youle 2006; Xu and Shi 2007). Although virtually all mitochondrial proteins are encoded within the nucleus, a small number of proteins are encoded by mitochondrial DNA (mtDNA). The integrity of the mitochondrial genome may affect cell survival as mutations in mtDNA accumulate in patients suffering from severe neurological diseases including Alzheimer''s, Huntington''s and Parkinson''s, as well as several types of cancer (Chatterjee et al. 2006; Higuchi 2007; Krishnan et al. 2007; Reeve et al. 2008). The number of mtDNA mutations also increases with age, suggesting a link between mitochondrial dysfunction and ageing (Cortopassi and Arnheim 1990; Corral-Debrinski et al. 1992; Cortopassi et al. 1992; Simonetti et al. 1992; Reeve et al. 2008). Contrary to the single genome in the nucleus, there are several copies of mtDNA in each mitochondrion. Thus, defects in a few mitochondrial genomes do not necessarily lead to mitochondrial dysfunction. Many patients suffering from mitochondrial diseases exhibit heteroplasmy, a phenomenon in which a mixture of wild-type and mutant mtDNAs exist in a single cell. The ratio of wild-type to mutant mtDNAs is critical in determining the penetrance of the genetic defect, where mutant loads >60% are required to cause respiratory chain dysfunction within an individual cell (Boulet et al. 1992; Chomyn et al. 1992; Sciacco et al. 1994).Even though N. crassa strains are generally deemed immortal if they can be subcultured ∼50 times, a wild-type strain was recently reported to senesce after 12,000 hr of growth, implying that this fungus undergoes natural or programmed ageing (Maheshwari and Navaraj 2008; Kothe et al. 2010). However, replicative life span is also influenced by genetic background as certain mutations can cause progressive deterioration of growth, ultimately leading to death. One such example is the nuclear-encoded natural death (nd), which when mutant causes a senescence phenotype correlating with the accumulation of multiple mtDNA deletions (Sheng 1951; Seidel-Rogol et al. 1989). The deletions of mtDNA in nd occurred between two 70- to 701-bp direct repeats, suggesting that the nd gene product regulates recombination, repair, or replication of mtDNA (Bertrand et al. 1993). Another nuclear mutation, senescence (sen), was isolated from N. intermedia and introgressed into N. crassa (Navaraj et al. 2000). Deletions were also observed in the mtDNA of sen mutants, but unlike those occurring in nd were flanked by 6- to 10-bp repeats typically associated with GC-rich palindromic sequences (D''Souza et al. 2005). The nature of the sequences that flanked the mtDNA deletions in these two mutants supported the existence of two distinct systems of mtDNA recombination in N. crassa: a general system of homologous recombination (system I) and a site-specific mechanism (system II), mediated in part by nd and sen, respectively (Bertrand et al. 1993; D''Souza et al. 2005). The nd and sen mutations have been mapped to linkage groups I and V, respectively, but neither gene has been cloned and the precise function of their gene products remains unclear. Two ultraviolet (UV)-sensitive mutants, uvs-4 and uvs-5, are thought to undergo senescence, but unfortunately, these strains have not been studied in great detail (Schroeder 1970; Perkins et al. 1993; Hausner et al. 2006). Premature senescence has also been observed in cytoplasmic mutants of N. crassa including the E35 and ER-3 stopper mutants that harbor large mtDNA deletions, as well as strains that accumulate mitochondrial plasmids capable of inserting into mtDNA through homologous recombination (de Vries et al. 1986; Akins et al. 1989; Myers et al. 1989; Niagro and Mishra 1989; Court et al. 1991; Alves and Videira 1998).While trying to establish the role of MUS-10 in DNA repair, we discovered that the mus-10 mutant exhibited a shortened life span, an abnormal mitochondrial morphology and mtDNA instability. We cloned the mus-10 gene through its ability to complement the MMS sensitivity of the mus-10 mutant and revealed that it encoded a novel F-box protein. This suggested that MUS-10 is part of an Skp, Cullin, F-box containing (SCF) E3 ubiquitin ligase complex that targets proteins for degradation by the 26S proteasome. The data we present in this article offer proof that an SCF complex can regulate both mitochondrial maintenance and cellular senescence.  相似文献   
129.
130.
Insulin stimulation of glucose uptake is achieved by redistribution of insulin-responsive glucose transporters, GLUT4, from intracellular storage compartment(s) to the plasma membrane in adipocytes and muscle cells. Although GLUT4 translocation has been investigated using various approaches, GLUT4 trafficking properties within the cell are largely unknown. Our novel method allows direct analysis of intracellular GLUT4 dynamics at the single molecule level by using Quantum dot technology, quantitatively establishing the behavioral nature of GLUT4. Our data demonstrate the predominant mechanism for intracellular GLUT4 sequestration in the basal state to be “static retention” in fully differentiated 3T3L1 adipocytes. We also directly defined three distinct insulin-stimulated GLUT4 trafficking processes: 1) release from the putative GLUT4 anchoring system in storage compartment(s), 2) the speed at which transport GLUT4-containing vesicles move, and 3) the tethering/docking steps at the plasma membrane. Intriguingly, insulin-induced GLUT4 liberation from its static state appeared to be abolished by either pretreatment with an inhibitor of phosphatidylinositol 3-kinase or overexpression of a dominant-interfering AS160 mutant (AS160/T642A). In addition, our novel approach revealed the possibility that, in certain insulin-resistant states, derangements in GLUT4 behavior can impair insulin-responsive GLUT4 translocation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号