首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2850篇
  免费   161篇
  国内免费   1篇
  3012篇
  2023年   7篇
  2022年   21篇
  2021年   41篇
  2020年   22篇
  2019年   32篇
  2018年   37篇
  2017年   31篇
  2016年   58篇
  2015年   78篇
  2014年   91篇
  2013年   229篇
  2012年   183篇
  2011年   158篇
  2010年   116篇
  2009年   96篇
  2008年   168篇
  2007年   162篇
  2006年   146篇
  2005年   178篇
  2004年   163篇
  2003年   169篇
  2002年   155篇
  2001年   60篇
  2000年   64篇
  1999年   42篇
  1998年   36篇
  1997年   36篇
  1996年   24篇
  1995年   18篇
  1994年   23篇
  1993年   16篇
  1992年   41篇
  1991年   39篇
  1990年   32篇
  1989年   36篇
  1988年   22篇
  1987年   27篇
  1986年   13篇
  1985年   16篇
  1984年   12篇
  1983年   12篇
  1982年   9篇
  1981年   8篇
  1980年   6篇
  1979年   15篇
  1978年   12篇
  1977年   7篇
  1973年   10篇
  1972年   6篇
  1968年   6篇
排序方式: 共有3012条查询结果,搜索用时 0 毫秒
191.
In order to characterize the contributions of respiratory and photosynthetic actions to energy conversions, the mixotrophic cells of Marchantia polymorpha were cultivated in the medium containing 10kg/m(3) glucose as an organic carbon source. The cultures were conducted with the supply of ordinary air (0.03% CO(2)) at constant incident light intensities of 50 and 180W/m(2). From the results of metabolic analysis, it was found that the cell yield based on ATP synthesis was estimated to be 6.3x10(-3)kg-dry cells/mol-ATP in these cultures. Under the examined conditions, energy conversion efficiency through respiration was larger than that through photosynthesis, and efficiency of overall energy conversion to ATP was maximized when the sum of energies from glucose and light captured by the cells was approximately 7.2x10(5)J/(hkg-dry cells). Taking into account the efficiency of overall energy conversion, a batch culture of M. polymorpha in a bioreactor was carried out by regulating incident light intensity ranging from 9 to 58W/m(2). In the culture with light regulation, the cell yield of 6.2x10(-9)kg-dry cells/J was achieved on the basis of energy provided to the system throughout the culture, and this value was 2.3 and 9.3 times as large as those obtained in the cultures under constant incident light intensities of 50 and 180W/m(2), respectively.  相似文献   
192.
Summary Heat shock proteins (HSPs) have been recognized as molecules that maintain cellular homeostasis during changes in the environment. Here we report that HSP90 functions not only in stress responses but also in certain aspects of cellular differentiation. We found that HSP90 slowed remarkably high expression in undifferentiated human embryonal carcinoma (EC) cells, which were subsequently dramatically down-regulated during in vitro cellular differentiation, following retinoic acid (RA) treatment, at the protein level. Surprisingly, heat shock treatment also triggered the down-regulation of HSP90 within 48 h at the protein level. Furthermore, the heat treatment induced cellular differentiation into neural cells. This down-regulation of HSP90 by heat treatment was shifted to an up-regulation attern after cellular differentiation in response to RA treatment. In order to clarify the functions of HSP90 in cellular differentiation, we conducted various experiments, including overexpression of HSP90 via gene transfer. We showed that the RA-induced differentiation of EC cells into a neural cell lineage was inhibited by overexpression of the HSP90α or-β isoform via the gene transfer method. On the other hand, the overexpression of HSP90β alone impaired cellular differentiation into trophoectoderm. These results show that down-regulation of HSP90 is a physiological critical event in the differentiation of human EC cells and that specific HSP90 isoforms may be involved in differentiation into specific cell lineages.  相似文献   
193.
The mechanism of proton transport around the Schiff base in bacteriorhodopsin was investigated by ab initio molecular orbital (MO) calculations. Computations were performed for the case where there is a water molecule between the Schiff base and the Asp residue and for the case where there is no water molecule. Changes in the atomic configuration and potential energy through the proton transport process were compared between two cases. In the absence of water, the protonated Schiff base was not stable, and a proton was spontaneously detached from the Schiff base. On the other hand, a stable structure of the protonated Schiff base was obtained in the presence of water. This suggests that the presence of a water molecule is required for stability in the formation of a protonated Schiff base.  相似文献   
194.
To characterize novel genes functioning specifically in mesophyll cells (MCs) or bundle sheath cells (BSCs) of C4 plants, differential screening of a maize cDNA library was conducted using 32P-labeled single-strand cDNAs prepared from MCs and bundle sheath strands (BSS) as probes. Ten genes encoding thylakoid membrane proteins in chloroplasts were identified as MC-abundant genes. These included genes for chlorophyll a/b binding proteins, plastocyanin, PsaD, PsbT, PsbR, PsbO, PsaK, PsaG, PsaN and ferredoxin. Seven genes identified as BSS-abundant genes encoded PEP carboxykinase, salt-inducible SalT homolog, heavy metal-inducible metallothionein-like protein, ABA- and drought-inducible glycine-rich protein, and three proteins of unknown function (one of which was named Bss1). In situ hybridization analyses for several selected genes revealed that mRNAs for the metallothionein-like protein and Bss1 were accumulated specifically in BSCs, and that mRNA for the SalT homolog was accumulated in vascular cells around phloem cells. Results suggest that the functional differentiation of MC chloroplasts accompany preferential expression of these small proteins in photosystem complexes and that BSCs are the major site of stress responses.  相似文献   
195.
Umeda T  Ohara H  Hayashi O  Ueki M  Hata Y 《Plastic and reconstructive surgery》2000,106(1):204-7; discussion 208-9
We present a case of toxic shock syndrome with necrotizing fasciitis after suction lipectomy. The patient underwent aesthetic suction lipectomy of the abdomen, buttocks, and thighs during an office procedure by a cosmetic surgeon. On postoperative day 2, the patient was referred to the emergency department of our hospital because of pain. On admission, the patient was in toxic shock. She required intensive medical treatment for about 1 month, along with psychiatric help to adapt after the illness. Although toxic shock syndrome is a rare postoperative complication, every plastic surgeon should be acquainted with it. A combination of early recognition, diagnosis, and aggressive supportive therapy is the only successful treatment.  相似文献   
196.
197.
198.
199.
Human erythrocyte protein phosphatase 2A, which comprises a 34-kDa catalytic C subunit, a 63-kDa regulatory A subunit and a 74-kDa regulatory B″ (δ) subunit, was phosphorylated at serine residues of B″ in vitro by cAMP-dependent protein kinase (A-kinase). In the presence and absence of 0.5 μM okadaic acid (OA), A-kinase gave maximal incorporation of 1.7 and 1.0 mol of phosphate per mol of B″, respectively. The Km value of A-kinase for CAB″ was 0.17±0.01 μM in the presence of OA. The major in vitro phosphorylation sites of B″ were identified as Ser-60, -75 and -573 in the presence of OA, and Ser-75 and -573 in the absence of OA. Phosphorylation of B″ did not dissociate B″ from CA, and stimulated the molecular activity of CAB″ toward phosphorylated H1 and H2B histones, 3.8- and 1.4-fold, respectively, but not toward phosphorylase a.  相似文献   
200.
The cDNA coding for Penicillium purpurogenum α-galactosidase (αGal) was cloned and sequenced. The deduced amino acid sequence of the α-Gal cDNA showed that the mature enzyme consisted of 419 amino acid residues with a molecular mass of 46,334 Da. The derived amino acid sequence of the enzyme showed similarity to eukaryotic αGals from plants, animals, yeasts, and filamentous fungi. The highest similarity observed (57% identity) was to Trichoderma reesei AGLI. The cDNA was expressed in Saccharomyces cerevisiae under the control of the yeast GAL10 promoter. Almost all of the enzyme produced was secreted into the culture medium, and the expression level reached was approximately 0.2 g/liter. The recombinant enzyme purified to homogeneity was highly glycosylated, showed slightly higher specific activity, and exhibited properties almost identical to those of the native enzyme from P. purpurogenum in terms of the N-terminal amino acid sequence, thermoactivity, pH profile, and mode of action on galacto-oligosaccharides.α-Galactosidase (αGal) (EC 3.2.1.22) is of particular interest in view of its biotechnological applications. αGal from coffee beans demonstrates a relatively broad substrate specificity, cleaving a variety of terminal α-galactosyl residues, including blood group B antigens on the erythrocyte surface. Treatment of type B erythrocytes with coffee bean αGal results in specific removal of the terminal α-galactosyl residues, thus generating serological type O erythrocytes (8). Cyamopsis tetragonoloba (guar) αGal effectively liberates the α-galactosyl residue of galactomannan. Removal of a quantitative proportion of galactose moieties from guar gum by αGal improves the gelling properties of the polysaccharide and makes them comparable to those of locust bean gum (18). In the sugar beet industry, αGal has been used to increase the sucrose yield by eliminating raffinose, which prevents normal crystallization of beet sugar (28). Raffinose and stachyose in beans are known to cause flatulence. αGal has the potential to alleviate these symptoms, for instance, in the treatment of soybean milk (16).αGals are also known to occur widely in microorganisms, plants, and animals, and some of them have been purified and characterized (5). Dey et al. showed that αGals are classified into two groups based on their substrate specificity. One group is specific for low-Mr α-galactosides such as pNPGal (p-nitrophenyl-α-d-galactopyranoside), melibiose, and the raffinose family of oligosaccharides. The other group of αGals acts on galactomannans and also hydrolyzes low-Mr substrates to various extents (6).We have studied the substrate specificity of αGals by using galactomanno-oligosaccharides such as Gal3Man3 (63-mono-α-d-galactopyranosyl-β-1,4-mannotriose) and Gal3Man4 (63-mono-α-d-galactopyranosyl-β-1,4-mannotetraose). The structures of these galactomanno-oligosaccharides are shown in Fig. Fig.1.1. Mortierella vinacea αGal I (11) and yeast αGals (29) are specific for the Gal3Man3 having an α-galactosyl residue (designated the terminal α-galactosyl residue) attached to the O-6 position of the nonreducing end mannose of β-1,4-mannotriose. On the other hand, Aspergillus niger 5-16 αGal (12) and Penicillium purpurogenum αGal (25) show a preference for the Gal3Man4 having an α-galactosyl residue (designated the stubbed α-galactosyl residue) attached to the O-6 position of the third mannose from the reducing end of β-1,4-mannotetraose. The M. vinacea αGal II (26) acts on both substrates to almost equal extents. The difference in specificity may be ascribed to the tertiary structures of these enzymes. Open in a separate windowFIG. 1Structures of galactomanno-oligosaccharides.Genes encoding αGals have been cloned from various sources, including humans (3), plants (20, 32), yeasts (27), filamentous fungi (4, 17, 24, 26), and bacteria (1, 2, 15). αGals from eukaryotes show a considerable degree of similarity and are grouped into family 27 (10).Here we describe the cloning of P. purpurogenum αGal cDNA, its expression in Saccharomyces cerevisiae, and the purification and characterization of the recombinant enzyme.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号