首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47篇
  免费   5篇
  52篇
  2021年   1篇
  2015年   2篇
  2013年   6篇
  2012年   2篇
  2011年   2篇
  2010年   4篇
  2009年   1篇
  2008年   1篇
  2006年   4篇
  2005年   2篇
  2004年   1篇
  2000年   2篇
  1999年   1篇
  1998年   4篇
  1997年   2篇
  1996年   3篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1989年   1篇
  1988年   1篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1977年   2篇
排序方式: 共有52条查询结果,搜索用时 15 毫秒
21.
The insertion of axonally transported fucosyl glycoproteins into the axolemma of regenerating nerve sprouts was examined in rat sciatic motor axons at intervals after nerve crush. [(3)H]Fucose was injected into the lumbar ventral horns and the nerves were removed at intervals between 1 and 14 d after labeling. To follow the fate of the “pulse- labeled” glycoproteins, we examined the nerves by correlative radiometric and EM radioautographic approaches. The results showed, first, that rapidly transported [(3)H]fucosyl glycoproteins were inserted into the axolemma of regenerating sprouts as well as parent axons. At 1 d after delivery, in addition to the substantial mobile fraction of radioactivity still undergoing bidirectional transport within the axon, a fraction of label was already associated with the axolemma. Insertion of labeled glycoproteins into the sprout axolemma appeared to occur all along the length of the regenerating sprouts, not just in sprout terminals. Once inserted, labeled glycoproteins did not undergo extensive redistribution, nor did they appear in sprout regions that formed (as a result of continued outgrowth) after their insertion. The amount of radioactivity in the regenerating nerves decreased with time, in part as a result of removal of transported label by retrograde transport. By 7-14 d after labeling, radioautography showed that almost all the remaining radioactivity was associated with axolemma. The regenerating sprouts retained increased amounts of labeled glycoproteins; 7 or 14 d after labeling, the regenerating sprouts had over twice as much of radioactivity as comparable lengths of control nerves or parent axons. One role of fast axonal transport in nerve regeneration is the contribution to the regenerating sprout of glycoproteins inserted into the axolemma; these membrane elements are added both during longitudinal outgrowth and during lateral growth and maturation of the sprout.  相似文献   
22.

Background  

Nitric oxide and prostaglandin E2 (PGE2play pivotal roles in both the pathogenesis of osteoarthritis and catabolic processes in articular cartilage. These mediators are influenced by both IL-1β and mechanical loading, and involve alterations in the inducible nitric oxide synthase (iNOS) and cyclo-oxygenase (COX)-2 enzymes. To identify the specific interactions that are activated by both types of stimuli, we examined the effects of dynamic compression on levels of expression of iNOS and COX-2 and involvement of the p38 mitogen-activated protein kinase (MAPK) pathway.  相似文献   
23.
Horizontal transmission has been well documented as a major mechanism for the dissemination of mariner-like elements (MLEs) among species. Less well understood are mechanisms that limit vertical transmission of MLEs resulting in the "spotty" or discontinuous distribution observed in closely related species. In this article we present evidence that the genome of the common ancestor of the melanogaster species subgroup of Drosophila contained an MLE related to the mellifera (honey bee) subfamily. Horizontal transmission, approximately 3-10 MYA, is strongly suggested by the observation that the sequence of the MLE in Drosophila erecta is 97% identical in nucleotide sequence with that of an MLE in the cat flea, Ctenocephalides felis. The D. erecta MLE has a spotty distribution among species in the melanogaster subgroup. The element has a high copy number in D. erecta and D. orena, a moderate copy number in D. teissieri and D. yakuba, and was apparently lost ("stochastic loss") in the lineage leading to D. melanogaster, D. simulans, D. mauritiana, and D. sechellia. In D. erecta, most copies are concentrated in the heterochromatin. Two copies from D. erecta, denoted De12 and De19, were cloned and sequenced, and they appear to be nonfunctional ("vertical inactivation"). It therefore appears that the predominant mode of MLE evolution is vertical inactivation and stochastic loss balanced against occasional reinvasion of lineages by horizontal transmission.   相似文献   
24.
We have studied the spatial distribution of IS1 elements in the genomes of natural isolates comprising the ECOR reference collection of Escherichia coli. We find evidence for nonrandomness at three levels. Many pairs of IS1 elements are in much closer proximity (< 10 kb) than can be accounted for by chance. IS1 elements in close proximity were identified by long-range PCR amplification of the genomic sequence between them. Each amplified region was sequenced and its map location determined by database screening of DNA hybridization. Among the ECOR strains with at least two IS1 elements, 54% had one or more pairs of elements separated by < 10 kb. We propose that this type of clustering is a result of "local hopping," in which we assume that a significant proportion of tranposition events leads to the insertion of a daughter IS element in the vicinity of the parental element. A second level of nonrandomness is found in strains with a modest number of IS1 elements that are mapped through the use of inverse PCR to amplify flanking genomic sequences: in these strains, the insertion sites tend to be clustered over a smaller region of chromosome than would be expected by chance. A third level of nonrandomness is observed in the composite distribution of IS elements across strains: among 20 mapped IS1 elements, none were found in the region of 48-77 minutes, a significant gap. One region of the E. coli chromosome, at 98 min, had a cluster of IS1 elements in seven ECOR strains of diverse phylogenetic origin. We deduce from sequence analysis that this pattern of distribution is a result of initial insertion in the most recent common ancestor of these strains and therefore not a hot spot of insertion. Analysis using long- range PCR with primers for IS2 and IS3 also yielded pairs of elements in close proximity, suggesting that these elements may also occasionally transpose by local hopping.   相似文献   
25.
Abstract Two chronosequences of unsaturated, buried loess sediments, ranging in age from <10,000 years to >1 million years, were investigated to reconstruct patterns of microbial ecological succession that have occurred since sediment burial. The relative importance of microbial transport and survival to succession was inferred from sediment ages, porewater ages, patterns of abundance (measured by direct counts, counts of culturable cells, and total phospholipid fatty acids), activities (measured by radiotracer and enzyme assays), and community composition (measured by phospholipid fatty acid patterns and Biolog substrate usage). Core samples were collected at two sites 40 km apart in the Palouse region of eastern Washington State, near the towns of Washtucna and Winona. The Washtucna site was flooded multiple times during the Pleistocene by glacial outburst floods; the Winona site elevation is above flood stage. Sediments at the Washtucna site were collected from near surface to 14.9 m depth, where the sediment age was approximately 250 ka and the porewater age was 3700 years; sample intervals at the Winona site ranged from near surface to 38 m (sediment age: approximately 1 Ma; porewater age: 1200 years). Microbial abundance and activities declined with depth at both sites; however, even the deepest, oldest sediments showed evidence of viable microorganisms. Same-age sediments had equal quantities of microorganisms, but different community types. Differences in community makeup between the two sites can be attributed to differences in groundwater recharge and paleoflooding. Estimates of the microbial community age can be constrained by porewater and sediment ages. In the shallower sediments (<9 m at Washtucna, <12 m at Winona), the microbial communities are likely similar in age to the groundwater; thus, microbial succession has been influenced by recent transport of microorganisms from the surface. In the deeper sediments, the populations may be considerably older than the porewater ages, since microbial transport is severely restricted in unsaturated sediments. This is particularly true at the Winona site, which was never flooded.  相似文献   
26.
Computer analyses of the entire GenBank database were conducted to examine correlation between splicing sites and codon positions in reading frames. Intron insertion patterns (i.e., splicing site locations with respect to codon positions) have been analyzed for all of the 74 codons of all the eukaryote taxonomic groups: primates, rodents mammals, vertebrates, invertebrates, and plants. We found that reading frames are interrupted by an intron at a codon boundary (as opposed to the middle of a codon) significantly more often than expected. This observation is consistent with the exon shuffling hypothesis, because exons that end at codon boundaries can be concatenated without causing a frame shift and thus are evolutionarily advantageous. On the other hand, when introns interrupt at the middles of codons, they exist in between the first and second bases much more frequently than between the second and third bases, despite the fact that boundaries between the first and second bases of codons are generally far more important than those between the second and third bases. The reason for this is not clear and yet to be explained. We also show that the length of an exon is a multiple of 3 more frequently than expected. Furthermore, the total length of two consecutive exons is also more frequently a multiple of 3. All the observations above are consistent with results recently published by Long, Rosenberg, and Gilbert (1995).   相似文献   
27.
Nuclear reprogramming resets differentiated tissue to generate induced pluripotent stem (iPS) cells. While genomic attributes underlying reacquisition of the embryonic-like state have been delineated, less is known regarding the metabolic dynamics underscoring induction of pluripotency. Metabolomic profiling of fibroblasts vs. iPS cells demonstrated nuclear reprogramming-associated induction of glycolysis, realized through augmented utilization of glucose and accumulation of lactate. Real-time assessment unmasked downregulated mitochondrial reserve capacity and ATP turnover correlating with pluripotent induction. Reduction in oxygen consumption and acceleration of extracellular acidification rates represent high-throughput markers of the transition from oxidative to glycolytic metabolism, characterizing stemness acquisition. The bioenergetic transition was supported by proteome remodeling, whereby 441 proteins were altered between fibroblasts and derived iPS cells. Systems analysis revealed overrepresented canonical pathways and interactome-associated biological processes predicting differential metabolic behavior in response to reprogramming stimuli, including upregulation of glycolysis, purine, arginine, proline, ribonucleoside and ribonucleotide metabolism, and biopolymer and macromolecular catabolism, with concomitant downregulation of oxidative phosphorylation, phosphate metabolism regulation, and precursor biosynthesis processes, prioritizing the impact of energy metabolism within the hierarchy of nuclear reprogramming. Thus, metabolome and metaboproteome remodeling is integral for induction of pluripotency, expanding on the genetic and epigenetic requirements for cell fate manipulation.  相似文献   
28.
Chromosomal DNA from 23 closely related, pathogenic strains of Escherichia coli was digested and probed for the insertion sequences IS1, IS2, IS4, IS5, and IS30. Under the assumption that elements residing in DNA restriction fragments of the same apparent length are identical by descent, parsimony analysis of these characters yielded a unique phylogenetic tree. This analysis not only distinguished among bacterial strains that were otherwise identical in their biochemical characteristics and enzyme electrophoretic mobilities, but certain aspects of the topology of the tree were consistent across several unrelated insertion elements. The distribution of IS elements was then reexamined in light of the inferred phylogenetic relationships to investigate the biological properties of the elements, such as rates of insertion and deletion, and to discover apparent recombinational events. The analysis shows that the pattern of distribution of insertion elements in the bacterial genome is sufficiently stable for epidemiological studies. Although the rate of recombination by conjugation has been postulated to be low, at least two such events appear to have taken place.   相似文献   
29.
Regulation of mRNA stability and translation plays a critical role in determining protein abundance within cells. Processing bodies (P‐bodies) are critical regulators of these processes. Here, we report that the Pim1 and 3 protein kinases bind to the P‐body protein enhancer of mRNA decapping 3 (EDC3) and phosphorylate EDC3 on serine (S)161, thereby modifying P‐body assembly. EDC3 phosphorylation is highly elevated in many tumor types, is reduced upon treatment of cells with kinase inhibitors, and blocks the localization of EDC3 to P‐bodies. Prostate cancer cells harboring an EDC3 S161A mutation show markedly decreased growth, migration, and invasion in tissue culture and in xenograft models. Consistent with these phenotypic changes, the expression of integrin β1 and α6 mRNA and protein is reduced in these mutated cells. These results demonstrate that EDC3 phosphorylation regulates multiple cancer‐relevant functions and suggest that modulation of P‐body activity may represent a new paradigm for cancer treatment.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号