首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   88篇
  免费   14篇
  2023年   1篇
  2021年   3篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2012年   3篇
  2011年   3篇
  2010年   4篇
  2009年   5篇
  2008年   2篇
  2007年   6篇
  2006年   3篇
  2005年   3篇
  2004年   4篇
  2002年   5篇
  2001年   3篇
  2000年   4篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1992年   2篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1986年   3篇
  1984年   1篇
  1983年   2篇
  1982年   5篇
  1981年   4篇
  1980年   3篇
  1979年   2篇
  1978年   3篇
  1977年   1篇
  1976年   2篇
  1975年   2篇
  1974年   2篇
  1971年   3篇
  1970年   1篇
  1968年   1篇
排序方式: 共有102条查询结果,搜索用时 265 毫秒
51.
52.
The cytoskeleton, mainly composed of actin filaments, microtubules, and intermediate filaments, is involved in cell proliferation, the maintenance of cell shape, and the formation of cellular junctions. The organization of the intermediate filaments is regulated by phosphorylation and dephosphorylation. We examined cell population growth, apoptotic cell death, and the morphology of cytoskeletal components in myoblast cultures derived from patients with the 3243A-->G mutation in mitochondrial DNA (mtDNA) and from control subjects by means of assays detecting cellular nucleic acids, histone-associated DNA fragments and by immunolabeling of cytoskeletal components. Population growth was slower in the 3243A-->G myoblast cultures, with no difference in the amount of apoptotic cell death. The organization of vimentin filaments in myoblasts with 3243A-->G was disturbed by randomization of filament direction and length, whereas no disturbances were observed in the other cytoskeletal proteins. Vimentin filaments formed large bundles surrounding the nucleus in mtDNA-less (rho(0)) osteosarcoma cells and in osteosarcoma cells after incubation with sodium azide and nocodazole. We conclude that defects in oxidative phosphorylation lead to selective disruption of the vimentin network, which may have a role in the pathophysiology of mitochondrial diseases.  相似文献   
53.
Steady-state kinetics of the H(+)-translocating NADH:ubiquinone reductase (complex I) were analyzed in membrane samples from bovine mitochondria and the soil bacterium Paracoccus denitrificans. In both enzymes the calculated K(m) values, in the membrane lipid phase, for four different ubiquinone analogues were in the millimolar range. Both the structure and size of the hydrophobic side chain of the acceptor affected its affinity for complex I. The ND1 subunit of bovine complex I is a mitochondrially encoded protein that binds the inhibitor dicyclohexylcarbodiimide (DCCD) covalently [Yagi and Hatefi (1988) J. Biol. Chem. 263, 16150-16155]. The NQO8 subunit of P. denitrificans complex I is a homologue of ND1, and within it three conserved Glu residues that could bind DCCD, E158, E212, and E247, were changed to either Asp or Gln and in the case of E212 also to Val. The DCCD sensitivity of the resulting mutants was, however, unaffected by the mutations. On the other hand, the ubiquinone reductase activity of the mutants was altered, and the mutations changed the interactions of complex I with short-chain ubiquinones. The implications of the results for the location of the ubiquinone reduction site in this enzyme are discussed.  相似文献   
54.
The crystal structure of a novel fungal lectin from Sclerotium rolfsii (SRL) in its free form and in complex with N-acetyl-d-galactosamine (GalNAc) and N-acetyl- d -glucosamine (GlcNAc) has been determined at 1.1 A, 2.0 A, and 1.7 A resolution, respectively. The protein structure is composed of two beta-sheets, which consist of four and six beta-strands, connected by two alpha-helices. Sequence and structural comparisons reveal that SRL is the third member of a newly identified family of fungal lectins, which includes lectins from Agaricus bisporus and Xerocomus chrysenteron that share a high degree of structural similarity and carbohydrate specificity. The data for the free SRL are the highest resolution data for any protein of this family. The crystal structures of the SRL in complex with two carbohydrates, GalNAc and GlcNAc, which differ only in the configuration of a single epimeric hydroxyl group, provide the structural basis for its carbohydrate specificity. SRL has two distinct carbohydrate-binding sites, a primary and a secondary. GalNAc binds at the primary site, whereas GlcNAc binds only at the secondary site. Thus, SRL has the ability to recognize and probably bind at the same time two different carbohydrate structures. Structural comparison to Agaricus bisporus lectin-carbohydrate complexes reveals that the primary site is also able to bind the Thomsen-Friedenreich antigen (Galbeta1-->3GalNAc-alpha- glycan structures) whereas the secondary site cannot. The features of the molecular recognition at the two sites are described in detail.  相似文献   
55.
Glycosylation of proteins and lipids takes place in the Golgi apparatus by the consecutive actions of functionally distinct glycosidases and glycosyltransferases. Current evidence indicates that they function as enzyme homomers and/or heteromers in the living cell. Here we investigate their organizational interplay and show that glycosyltransferase homomers are assembled in the endoplasmic reticulum. Upon transport to the Golgi, the majority of homomers are disassembled to allow the formation of enzyme heteromers between sequentially acting medial-Golgi enzymes GnT-I and GnT-II or trans-Golgi enzymes GalT-I and ST6Gal-I. This transition is driven by the acidic Golgi environment, as it was markedly inhibited by raising Golgi luminal pH with chloroquine. Our FRAP (fluorescence recovery after photobleaching) measurements showed that the complexes remain mobile Golgi membrane constituents that can relocate to the endoplasmic reticulum or to the scattered Golgi mini-stacks upon brefeldin A or nocodazole treatment, respectively. During this relocation, heteromers undergo a reverse transition back to enzyme homomers. These data unveil an unprecedented organizational interplay between Golgi N-glycosyltransferases that involves dynamic and organelle microenvironment-driven transitions between enzyme homomers and heteromers during their trafficking within the early secretory compartments.  相似文献   
56.
57.

Background  

The c.2447G>A (p.R722H) mutation in the gene POLG1 of the catalytic subunit of human mitochondrial polymerase gamma has been previously found in a few occasions but its pathogenicity has remained uncertain. We set out to ascertain its contribution to neuromuscular disease.  相似文献   
58.
59.
Innate immune cells like monocytes patrol the vasculature and mucosal surfaces, recognize pathogens, rapidly redistribute to affected tissues and cause inflammation by secretion of cytokines. We previously showed that monocytes are reduced in blood but accumulate in the airways of patients with Puumala virus (PUUV) caused hemorrhagic fever with renal syndrome (HFRS). However, the dynamics of monocyte infiltration to the kidneys during HFRS, and its impact on disease severity are currently unknown. Here, we examined longitudinal peripheral blood samples and renal biopsies from HFRS patients and performed in vitro experiments to investigate the fate of monocytes during HFRS. During the early stages of HFRS, circulating CD14–CD16+ nonclassical monocytes (NCMs) that patrol the vasculature were reduced in most patients. Instead, CD14+CD16– classical (CMs) and CD14+CD16+ intermediate monocytes (IMs) were increased in blood, in particular in HFRS patients with more severe disease. Blood monocytes from patients with acute HFRS expressed higher levels of HLA-DR, the endothelial adhesion marker CD62L and the chemokine receptors CCR7 and CCR2, as compared to convalescence, suggesting monocyte activation and migration to peripheral tissues during acute HFRS. Supporting this hypothesis, increased numbers of HLA-DR+, CD14+, CD16+ and CD68+ cells were observed in the renal tissues of acute HFRS patients compared to controls. In vitro, blood CD16+ monocytes upregulated CD62L after direct exposure to PUUV whereas CD16– monocytes upregulated CCR7 after contact with PUUV-infected endothelial cells, suggesting differential mechanisms of activation and response between monocyte subsets. Together, our findings suggest that NCMs are reduced in blood, potentially via CD62L-mediated attachment to endothelial cells and monocytes are recruited to the kidneys during HFRS. Monocyte mobilization, activation and functional impairment together may influence the severity of disease in acute PUUV-HFRS.  相似文献   
60.
A 4D approach for protein 1H chemical shift prediction was explored. The 4th dimension is the molecular flexibility, mapped using molecular dynamics simulations. The chemical shifts were predicted with a principal component model based on atom coordinates from a database of 40 protein structures. When compared to the corresponding non-dynamic (3D) model, the 4th dimension improved prediction by 6–7%. The prediction method achieved RMS errors of 0.29 and 0.50 ppm for Hα and HN shifts, respectively. However, for individual proteins the RMS errors were 0.17–0.34 and 0.34–0.65 ppm for the Hα and HN shifts, respectively. X-ray structures gave better predictions than the corresponding NMR structures, indicating that chemical shifts contain invaluable information about local structures. The 1H chemical shift prediction tool 4DSPOT is available from .  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号