首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   102篇
  免费   3篇
  105篇
  2023年   1篇
  2022年   4篇
  2021年   3篇
  2020年   2篇
  2019年   1篇
  2018年   4篇
  2017年   1篇
  2015年   7篇
  2014年   4篇
  2013年   7篇
  2012年   7篇
  2011年   16篇
  2010年   6篇
  2009年   5篇
  2008年   4篇
  2007年   6篇
  2006年   5篇
  2005年   6篇
  2004年   2篇
  2003年   3篇
  2002年   5篇
  2001年   2篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
排序方式: 共有105条查询结果,搜索用时 15 毫秒
31.
We have determined the structural changes that accompany the formation of a stable complex between a destabilized mutant of T4 lysozyme (T4L) and the small heat shock protein α-crystallin. Using pairs of fluorescence or spin label probes to fingerprint the T4L tertiary fold, we demonstrate that binding disrupts tertiary packing in the two domains as well as across the active-site cleft. Furthermore, increased distances between i and i + 4 residues of helices support a model in which the bound structure is not native-like but significantly unfolded. In the confines of the oligomer, T4L has a preferential orientation with residues in the more hydrophobic C-terminal domain sequestered in a buried environment, while residues in the N-terminal domain are exposed to the aqueous solvent. Furthermore, electron paramagnetic resonance spectral line shapes of sites in the N-terminal domain are narrower than in the folded, unbound T4L reflecting an unstructured backbone and an asymmetric pattern of contacts between T4L and α-crystallin. The net orientation is not affected by the location of the destabilizing mutation consistent with the notion that binding is not triggered by recognition of localized unfolding. Together, the structural and thermodynamic data indicate that the stably bound conformation of T4L is unfolded and support a model in which the two modes of substrate binding originate from two discrete binding sites on the chaperone.  相似文献   
32.
Isolation of vitellogenin of the Schistocerca gregaria (Forskal) in its gregarious phase was achieved by a combination of gel permeation and anion exchange chromatography. Staining for carbohydrate and lipid moieties showed that the vitellogenin is a glycolipoprotein. The vitellogenin of S. gregaria has a native molecular weight of about 700 kDa. On SDS-PAGE, the protein showed nine apoproteins of about 124, 120, 105, 60, 59, 58, 57, 53 and 34 kD. Determination of the levels of vitellogenin by ELISA in the haemolymph of maturing females showed that those exposed to mature males from 1 to 2 days after ecdysis had increased levels of vitellogenin from day 10 (81.1 ± 4.5). In contrast, females exposed to immature males or kept alone showed an increase (107.3 ± 0.9 and 70.2 ± 2.7) not until day 16 or later, respectively. These results are consistent with the accelerating effect of pheromonal emissions from mature males on the maturation of female S. gregaria.  相似文献   
33.
34.
TCRs exhibit a high degree of specificity but may also recognize multiple and distinct peptide-MHC complexes, illustrating the so-called cross-reactivity of TCR-peptide-MHC recognition. In this study, we report the first evidence of CD4(+) T cells recognizing the same tumor peptide-epitope from NY-ESO-1, in the context of multiple HLA-DR and HLA-DP molecules. These cross-reactive CD4(+) T cells recognized not only autologous but also allogenic dendritic cells previously loaded with the relevant protein (i.e., the normally processed and presented epitope). Using clonotypic real-time RT-PCR, we have detected low frequencies of CD4(+) T cells expressing one cross-reactive TCR from circulating CD4(+) T cells of patients with stage IV melanoma either spontaneously or after immunization but not in normal donors. The maintenance of cross-reactive tumor Ag-specific CD4(+) T cells in PBLs of cancer patients required the presence of tumor Ag/epitope in the context of the MHC molecule used to prime the Ag-specific CD4(+) T cells. Our findings have significant implications for the optimization of TCR gene transfer immunotherapies widely applicable to cancer patients.  相似文献   
35.
ATP-binding cassette (ABC) transporters transduce the free energy of ATP hydrolysis to power the mechanical work of substrate translocation across cell membranes. MsbA is an ABC transporter implicated in trafficking lipid A across the inner membrane of Escherichia coli. It has sequence similarity and overlapping substrate specificity with multidrug ABC transporters that export cytotoxic molecules in humans and prokaryotes. Despite rapid advances in structure determination of ABC efflux transporters, little is known regarding the location of substrate-binding sites in the transmembrane segment and the translocation pathway across the membrane. In this study, we have mapped residues proximal to the daunorubicin (DNR)-binding site in MsbA using site-specific, ATP-dependent quenching of DNR intrinsic fluorescence by spin labels. In the nucleotide-free MsbA intermediate, DNR-binding residues cluster at the cytoplasmic end of helices 3 and 6 at a site accessible from the membrane/water interface and extending into an aqueous chamber formed at the interface between the two transmembrane domains. Binding of a nonhydrolyzable ATP analog inverts the transporter to an outward-facing conformation and relieves DNR quenching by spin labels suggesting DNR exclusion from proximity to the spin labels. The simplest model consistent with our data has DNR entering near an elbow helix parallel to the water/membrane interface, partitioning into the open chamber, and then translocating toward the periplasm upon ATP binding.ATP-binding cassette (ABC)2 transporters transduce the energy of ATP hydrolysis to power the movement of a wide range of substrates across the cell membranes (1, 2). They constitute the largest family of prokaryotic transporters, import essential cell nutrients, flip lipids, and export toxic molecules (3). Forty eight human ABC transporters have been identified, including ABCB1, or P-glycoprotein, which is implicated in cross-resistance to drugs and cytotoxic molecules (4, 5). Inherited mutations in these proteins are linked to diseases such as cystic fibrosis, persistent hypoglycemia of infancy, and immune deficiency (6).The functional unit of an ABC transporter consists of four modules. Two highly conserved ABCs or nucleotide-binding domains (NBDs) bind and hydrolyze ATP to supply the active energy for transport (7). ABCs drive the mechanical work of proteins with diverse functions ranging from membrane transport to DNA repair (3, 5). Substrate specificity is determined by two transmembrane domains (TMDs) that also provide the translocation pathway across the bilayer (7). Bacterial ABC exporters are expressed as monomers, each consisting of one NBD and one TMD, that dimerize to form the active transporter (3). The number of transmembrane helices and their organization differ significantly between ABC importers and exporters reflecting the divergent structural and chemical nature of their substrates (1, 8, 9). Furthermore, ABC exporters bind substrates directly from the cytoplasm or bilayer inner leaflet and release them to the periplasm or bilayer outer leaflet (10, 11). In contrast, bacterial importers have their substrates delivered to the TMD by a dedicated high affinity substrate-binding protein (12).In Gram-negative bacteria, lipid A trafficking from its synthesis site on the inner membrane to its final destination in the outer membrane requires the ABC transporter MsbA (13). Although MsbA has not been directly shown to transport lipid A, suppression of MsbA activity leads to cytoplasmic accumulation of lipid A and inhibits bacterial growth strongly suggesting a role in translocation (14-16). In addition to this role in lipid A transport, MsbA shares sequence similarity with multidrug ABC transporters such as human ABCB1, LmrA of Lactococcus lactis, and Sav1866 of Staphylococcus aureus (16-19). ABCB1, a prototype of the ABC family, is a plasma membrane protein whose overexpression provides resistance to chemotherapeutic agents in cancer cells (1). LmrA and MsbA have overlapping substrate specificity with ABCB1 suggesting that both proteins can function as drug exporters (18, 20). Indeed, cells expressing MsbA confer resistance to erythromycin and ethidium bromide (21). MsbA can be photolabeled with the ABCB1/LmrA substrate azidopine and can transport Hoechst 33342 (H33342) across membrane vesicles in an energy-dependent manner (21).The structural mechanics of ABC exporters was revealed from comparison of the MsbA crystal structures in the apo- and nucleotide-bound states as well as from analysis by spin labeling EPR spectroscopy in liposomes (17, 19, 22, 23). The energy harnessed from ATP binding and hydrolysis drives a cycle of NBD association and dissociation that is transmitted to induce reorientation of the TMD from an inward- to outward-facing conformation (17, 19, 22). Large amplitude motion closes the cytoplasmic end of a chamber found at the interface between the two TMDs and opens it to the periplasm (23). These rearrangements lead to significant changes in chamber hydration, which may drive substrate translocation (22).Substrate binding must precede energy input, otherwise the cycle is futile, wasting the energy of ATP hydrolysis without substrate extrusion (7). Consistent with this model, ATP binding reduces ABCB1 substrate affinity, potentially through binding site occlusion (24-26). Furthermore, the TMD substrate-binding event signals the NBD to stimulate ATP hydrolysis increasing transport efficiency (1, 27, 28). However, there is a paucity of information regarding the location of substrate binding, the transport pathway, and the structural basis of substrate recognition by ABC exporters. In vitro studies of MsbA substrate specificity identify a broad range of substrates that stimulate ATPase activity (29). In addition to the putative physiological substrates lipid A and lipopolysaccharide (LPS), the ABCB1 substrates Ilmofosine, H33342, and verapamil differentially enhance ATP hydrolysis of MsbA (29, 30). Intrinsic MsbA tryptophan (Trp) fluorescence quenching by these putative substrate molecules provides further support of interaction (29).Extensive biochemical analysis of ABCB1 and LmrA provides a general model of substrate binding to ABC efflux exporters. This so-called “hydrophobic cleaner model” describes substrates binding from the inner leaflet of the bilayer and then translocating through the TMD (10, 31, 32). These studies also identified a large number of residues involved in substrate binding and selectivity (33). When these crucial residues are mapped onto the crystal structures of MsbA, a subset of homologous residues clusters to helices 3 and 6 lining the putative substrate pathway (34). Consistent with a role in substrate binding and specificity, simultaneous replacement of two serines (Ser-289 and Ser-290) in helix 6 of MsbA reduces binding and transport of ethidium and taxol, although H33342 and erythromycin interactions remain unaffected (34).The tendency of lipophilic substrates to partition into membranes confounds direct analysis of substrate interactions with ABC exporters (35, 36). Such partitioning may promote dynamic collisions with exposed Trp residues and nonspecific cross-linking in photo-affinity labeling experiments. In this study, we utilize a site-specific quenching approach to identify residues in the vicinity of the daunorubicin (DNR)-binding site (37). Although the data on DNR stimulation of ATP hydrolysis is inconclusive (20, 29, 30), the quenching of MsbA Trp fluorescence suggests a specific interaction. Spin labels were introduced along transmembrane helices 3, 4, and 6 of MsbA to assess their ATP-dependent quenching of DNR fluorescence. Residues that quench DNR cluster along the cytoplasmic end of helices 3 and 6 consistent with specific binding of DNR. Furthermore, many of these residues are not lipid-exposed but face the putative substrate chamber formed between the two TMDs. These residues are proximal to two Trps, which likely explains the previously reported quenching (29). Our results suggest DNR partitions to the membrane and then binds MsbA in a manner consistent with the hydrophobic cleaner model. Interpretation in the context of the crystal structures of MsbA identifies a putative translocation pathway through the transmembrane segment.  相似文献   
36.
37.
Small heat shock proteins (sHSPs) are ubiquitous chaperones that bind and sequester non-native proteins preventing their aggregation. Despite extensive studies of sHSPs chaperone activity, the location of the bound substrate within the sHSP oligomer has not been determined. In this paper, we used cryoelectron microscopy (cryoEM) to visualize destabilized mutants of T4 lysozyme (T4L) bound to engineered variants of the small heat shock protein Hsp16.5. In contrast to wild type Hsp16.5, binding of T4L to these variants does not induce oligomer heterogeneity enabling cryoEM analysis of the complexes. CryoEM image reconstruction reveals the sequestration of T4L in the interior of the Hsp16.5 oligomer primarily interacting with the buried N-terminal domain but also tethered by contacts with the α-crystallin domain shell. Analysis of Hsp16.5-WT/T4L complexes uncovers oligomer expansion as a requirement for high affinity binding. In contrast, a low affinity mode of binding is found to involve T4L binding on the outer surface of the oligomer bridging the formation of large complexes of Hsp16.5. These mechanistic principles were validated by cryoEM analysis of an expanded variant of Hsp16.5 in complex with T4L and Hsp16.5-R107G, which is equivalent to a mutant of human αB-crystallin linked to cardiomyopathy. In both cases, high affinity binding is found to involve conformational changes in the N-terminal region consistent with a central role of this region in substrate recognition.  相似文献   
38.
39.
The globin-coupled sensor (GCS) of Geobacter sulfurreducens is unique amongst GCSs in that its signalling domain is a transmembrane domain with yet unknown function. In the present work we use X-band continuous-wave and pulsed electron paramagnetic resonance (EPR) to investigate the ferric form of the globin domain of the G. sulfurreducens GCS (GsGCS162) at pH 8.5. This form shows a unique bis-histidine coordination of the heme with the F8His and E11His. In contrast with previous crystal structure data, where three conformers of the heme structure were identified, ferric GsGCS162 assumes only one conformation in frozen solution. The EPR data of ferric GsGCS162 are compared in detail with those of other bis-histidine coordinated globins, including other GCS systems.  相似文献   
40.
Human small heat shock protein 27 (Hsp27) undergoes concentration-dependent equilibrium dissociation from an ensemble of large oligomers to a dimer. This phenomenon plays a critical role in Hsp27 chaperone activity in vitro enabling high affinity binding to destabilized proteins. In vivo dissociation, which is regulated by phosphorylation, controls Hsp27 role in signaling pathways. In this study, we explore the sequence determinants of Hsp27 dissociation and define the structural basis underlying the increased affinity of Hsp27 dimers to client proteins. A systematic cysteine mutagenesis is carried out to identify residues in the N-terminal domain important for the equilibrium between Hsp27 oligomers and dimers. In addition, spin-labels were attached to the cysteine mutants to enable electron paramagnetic resonance (EPR) analysis of residue environment and solvent accessibility in the context of the large oligomers, upon dissociation to the dimer, and following complex formation with the model substrate T4 Lysozyme (T4L). The mutagenic analysis identifies residues that modulate the equilibrium dissociation in favor of the dimer. EPR analysis reveals that oligomer dissociation disrupts subunit contacts leading to the exposure of Hsp27 N-terminal domain to the aqueous solvent. Moreover, regions of this domain are highly dynamic with no evidence of a packed core. Interaction between T4L and sequences in this domain is inferred from transition of spin-labels to a buried environment in the substrate/Hsp27 complex. Together, the data provide the first structural analysis of sHSP dissociation and support a model of chaperone activity wherein unstructured and highly flexible regions in the N-terminal domain are critical for substrate binding.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号