首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   161篇
  免费   11篇
  2023年   1篇
  2022年   3篇
  2021年   4篇
  2020年   3篇
  2019年   2篇
  2018年   5篇
  2017年   2篇
  2016年   3篇
  2015年   9篇
  2014年   5篇
  2013年   6篇
  2012年   5篇
  2011年   14篇
  2010年   13篇
  2009年   10篇
  2008年   14篇
  2007年   11篇
  2006年   16篇
  2005年   8篇
  2004年   2篇
  2003年   6篇
  2002年   3篇
  2001年   3篇
  2000年   3篇
  1999年   1篇
  1996年   1篇
  1995年   1篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
  1985年   4篇
  1982年   2篇
  1981年   1篇
  1979年   2篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1971年   1篇
排序方式: 共有172条查询结果,搜索用时 15 毫秒
111.
Native chemical ligation (NCL) approaches have been applied extensively to soluble proteins. Fewer successes have been achieved with membrane peptides. In this report, the synthesis and semisynthesis by NCL of peptides corresponding to 1.7 transmembrane domains of the α-factor receptor from Saccharomyces cerevisiae is described. Synthesis was achieved when the ligation point was approximately in the middle of the loop joining the two transmembrane regions. In contrast, little to no ligation was observed when the ligation point was at the putative membrane interface of the sixth transmembrane domain (TM6) and the third extracellular loop (EL3). Ligations of a chemically synthesized 22-residue thioester with a synthetic 29-residue N-Cys peptide and a biosynthetic 73-residue N-Cys peptide were successfully achieved in both trifluoroethanol/guanidinium hydrochloride (TFE/GnHCl) and sodium dodecyl sulfate (SDS) media when mercaptoethanesulfonic acid (MESNA) was used as a catalyst. The resulting 51-residue and 95-residue ligation products were purified by reversed phase HPLC and recovered on a mg scale. Both peptides were >95% pure as determined by HPLC and had the expected molecular weight as judged by mass spectrometry. Segmental labeling of the 95-residue fragment, in which the N-Cys portion was [15N] labeled, resulted in a peptide that gave an NMR spectrum which was comparable to that of the unligated 73-residue peptide alone. R B Merrifield personified the finest qualities of a human being. He was an outstanding individual who influenced the way research is conducted by tens of thousands of scientists. At the same time he was a warm, humble, sincere man who was extremely kind and generous. I (FN) personally saw his generosity during a seminar he invited me to give at Rockefeller University. He was already a Nobel laureate but he treated me as a colleague and the encouragement he offered concerning my research program was very important for my future in academia. It is an honor to be among the participants in a volume honoring his contributions to peptide science.  相似文献   
112.
113.
Many factors that change the temperature position and interval of the DNA helix–coil transition often also alter the shape of multi-peak differential melting curves (DMCs). For DNAs with a multi-peak DMC, there is no agreement on the most useful definition for the melting temperature, Tm, and temperature melting width, ΔT, of the entire DNA transition. Changes in Tm and ΔT can reflect unstable variation of the shape of the DMC as well as alterations in DNA thermal stability and heterogeneity. Here, experiments and computer modeling for DNA multi-peak DMCs varying under different factors allowed testing of several methods of defining Tm and ΔT. Indeed, some of the methods give unreasonable “jagged” Tm and ΔT dependences on varying relative concentration of DNA chemical modifications (rb), [Na+], and GC content. At the same time, Tm determined as the helix–coil transition average temperature, and ΔT, which is proportional to the average absolute temperature deviation from this temperature, are suitable to characterize multi-peak DMCs. They give smoothly varying theoretical and experimental dependences of Tm and ΔT on rb, [Na+], and GC content. For multi-peak DMCs, Tm value determined in this way is the closest to the thermodynamic melting temperature (the helix–coil transition enthalpy/entropy ratio).  相似文献   
114.
The implementation of electron beam radiation coupled with the use of probiotics is one of the newest food processing technologies that may be used to ensure food safety and improve shelf life of food products. The purpose of this study was to evaluate the effect of 50–150-Gy electron beam irradiation on the antimicrobial activity of the putative probiotic strain Lactobacillus rhamnosus Vahe. Low-dose electron beam irradiation of lactobacilli cells was performed using the Advanced Research Electron Accelerator Laboratory’s electron accelerator, and the agar well diffusion method and Verhulst logistic function were used to evaluate the effect of radiation on anti–Klebsiella pneumoniae activity of the cell free supernatant of L. rhamnosus Vahe cells in vitro. Our results suggest that 50–150-Gy electron beam irradiation decreases the viability of the investigated lactobacilli, but does not significantly change the probiotic’s activity against K. pneumoniae. Results indicate that the combined use of irradiation and L. rhamnosus Vahe might be suggested for non-thermal food sterilizing technologies.  相似文献   
115.
Interleukin-1 stimulation leads to the recruitment of MyD88, interleukin-1 receptor-associated kinase 1 (IRAK-1) and interleukin-1 receptor-associated kinase 4 (IRAK-4) to the IL-1 receptor. The formation of the IL-1 receptor complex triggers a series of IRAK-1 autophosphorylations, which result in activation. IRAK-4 is upstream of IRAK-1 and may act as IRAK-1 kinase to transmit the signal. To date, there is no upstream kinase reported for IRAK-4; the activation mechanism of IRAK-4 remains poorly understood. Here, for the first time, we report three autophosphorylation sites that are responsible for IRAK-4 kinase activity. LC-MS/MS analysis has identified phosphorylations at T342, T345, and S346, which reside within the activation loop. Site-directed mutants at these positions exhibit significant reductions in the catalytic activity of IRAK-4 (T342A: 57%; T345A: 66%; S346A: 50%). The absence of phosphorylation in kinase-dead IRAK-4 indicates that phosphorylations in the activation loop result from autophosphorylation rather than from phosphorylation by an upstream kinase. Finally, we demonstrate that autophosphorylation is an intramolecular event as wild-type IRAK-4 failed to transphosphorylate kinase-inactive IRAK-4. The present data indicate that the kinase activity of IRAK-4 is dependent on the autophosphorylations at T342, T345, and S346 in the activation loop.  相似文献   
116.
Acetate, propionate, and butyrate, collectively referred to as volatile fatty acids (VFA), are considered among the most important electron donors for sulfate-reducing bacteria (SRB) and heterotrophic nitrate-reducing bacteria (hNRB) in oil fields. Samples obtained from a field in the Neuquén Basin, western Argentina, had significant activity of mesophilic SRB, hNRB, and nitrate-reducing, sulfide-oxidizing bacteria (NR-SOB). In microcosms, containing VFA (3 mM each) and excess sulfate, SRB first used propionate and butyrate for the production of acetate, which reached concentrations of up to 12 mM prior to being used as an electron donor for sulfate reduction. In contrast, hNRB used all three organic acids with similar kinetics, while reducing nitrate to nitrite and nitrogen. Transient inhibition of VFA-utilizing SRB was observed with 0.5 mM nitrite and permanent inhibition with concentrations of 1 mM or more. The addition of nitrate to medium flowing into an upflow, packed-bed bioreactor with an established VFA-oxidizing SRB consortium led to a spike of nitrite up to 3 mM. The nitrite-mediated inhibition of SRB led, in turn, to the transient accumulation of up to 13 mM of acetate. The complete utilization of nitrate and the incomplete utilization of VFA, especially propionate, and sulfate indicated that SRB remained partially inhibited. Hence, in addition to lower sulfide concentrations, an increase in the concentration of acetate in the presence of sulfate in waters produced from an oil field subjected to nitrate injection may indicate whether the treatment is successful. The microbial community composition in the bioreactor, as determined by culturing and culture-independent techniques, indicated shifts with an increasing fraction of nitrate. With VFA and sulfate, the SRB genera Desulfobotulus, Desulfotignum, and Desulfobacter as well as the sulfur-reducing Desulfuromonas and the NR-SOB Arcobacter were detected. With VFA and nitrate, Pseudomonas spp. were present. hNRB/NR-SOB from the genus Sulfurospirillum were found under all conditions.  相似文献   
117.
118.
Coiled‐coils are essential components of many protein complexes. First discovered in structural proteins such as keratins, they have since been found to figure largely in the assembly and dynamics required for diverse functions, including membrane fusion, signal transduction and motors. Coiled‐coils have a characteristic repeating seven‐residue geometric and sequence motif, which is sometimes interrupted by the insertion of one or more residues. Such insertions are often highly conserved and critical to interdomain communication in signaling proteins such as bacterial histidine kinases. Here we develop the “accommodation index” as a parameter that allows automatic detection and classification of insertions based on the three dimensional structure of a protein. This method allows precise identification of the type of insertion and the “accommodation length” over which the insertion is structurally accommodated. A simple theory is presented that predicts the structural perturbations of 1, 3, 4 residue insertions as a function of the length over which the insertion is accommodated. Analysis of experimental structures is in good agreement with theory, and shows that short accommodation lengths give rise to greater perturbation of helix packing angles, changes in local helical phase, and increased structural asymmetry relative to long accommodation lengths. Cytoplasmic domains of histidine kinases in different signaling states display large changes in their accommodation lengths, which can now be seen to underlie diverse structural transitions including symmetry/asymmetry and local variations in helical phase that accompany signal transduction.  相似文献   
119.
The melting transition of DNA–ligand complexes, allowing for two binding mechanisms to different DNA conformations is treated theoretically. The obtained results express the behavior of the experimentally measurable quantities, degree of denaturation, and concentrations of bound ligands on the temperature. The range of binding parameters is obtained, where denaturation curves become multiphasic. The possible application to the nanocomposites crystallization is discussed.  相似文献   
120.
Despite intensive treatment with chemotherapy, radiotherapy and surgery, over 70% of patients with metastatic Ewing''s Sarcoma Family of Tumors (EFT) will die of their disease. We hypothesize that properly characterized laboratory models reflecting the drug resistance of clinical tumors will facilitate the application of new therapeutic agents to EFT. To determine resistance patterns, we studied newly established EFT cell lines derived from different points in therapy: two established at diagnosis (CHLA-9, CHLA-32), two after chemotherapy and progressive disease (CHLA-10, CHLA-25), and two at relapse after myeloablative therapy and autologous bone marrow transplantation (post-ABMT) (CHLA-258, COG-E-352). The new lines were compared to widely studied EFT lines TC-71, TC-32, SK-N-MC, and A-673. These lines were extensively characterized with regard to identity (short tandem repeat (STR) analysis), p53, p16/14 status, and EWS/ETS breakpoint and target gene expression profile. The DIMSCAN cytotoxicity assay was used to assess in vitro drug sensitivity to standard chemotherapy agents. No association was found between drug resistance and the expression of EWS/ETS regulated genes in the EFT cell lines. No consistent association was observed between drug sensitivity and p53 functionality or between drug sensitivity and p16/14 functionality across the cell lines. Exposure to chemotherapy prior to cell line initiation correlated with drug resistance of EFT cell lines in 5/8 tested agents at clinically achievable concentrations (CAC) or the lower tested concentration (LTC): (cyclophosphamide (as 4-HC) and doxorubicin at CAC, etoposide, irinotecan (as SN-38) and melphalan at LTC; P<0.1 for one agent, and P<0.05 for four agents. This panel of well-characterized drug-sensitive and drug-resistant cell lines will facilitate in vitro preclinical testing of new agents for EFT.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号