首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1772篇
  免费   77篇
  国内免费   3篇
  1852篇
  2023年   15篇
  2022年   43篇
  2021年   58篇
  2020年   49篇
  2019年   50篇
  2018年   49篇
  2017年   44篇
  2016年   67篇
  2015年   84篇
  2014年   94篇
  2013年   119篇
  2012年   156篇
  2011年   155篇
  2010年   75篇
  2009年   70篇
  2008年   78篇
  2007年   82篇
  2006年   79篇
  2005年   73篇
  2004年   58篇
  2003年   51篇
  2002年   48篇
  2001年   23篇
  2000年   19篇
  1999年   17篇
  1998年   7篇
  1997年   8篇
  1996年   7篇
  1995年   5篇
  1994年   10篇
  1993年   7篇
  1992年   14篇
  1991年   9篇
  1990年   14篇
  1989年   8篇
  1988年   9篇
  1987年   3篇
  1986年   7篇
  1985年   8篇
  1984年   5篇
  1982年   9篇
  1981年   5篇
  1980年   5篇
  1979年   8篇
  1978年   12篇
  1977年   10篇
  1976年   7篇
  1974年   3篇
  1972年   3篇
  1967年   2篇
排序方式: 共有1852条查询结果,搜索用时 15 毫秒
1.
2.
3.
A new single gene-recessive internode length mutant inPisum, lkc, is characterized. The internodes oflkc plants are 30–40% shorter than those of comparableLkc plants, and this is attributable to reductions in both cell length and the number of cells per internode. Dwarfism in the mutant is not due to modified gibberellin (GA) levels, as determined by gas chromatography-selected ion monitoring (GC-SIM) for GA1 and GA20, and bioassay (rice cv. Tan-ginbozu). Furthermore,lkc plants are not as responsive as the wild-type to applied GA1. The diminished stature oflkc plants appears to result from a direct or indirect interference with the transduction of the GA1 signal.  相似文献   
4.
Accelerated cell death 11 (ACD11) is an autoimmune gene that suppresses pathogen infection in plants by preventing plant cells from becoming infected by any pathogen. This gene is widely known for growth inhibition, premature leaf chlorosis, and defense-related programmed cell death (PCD) in seedlings before flowering in Arabidopsis plant. Specific amino acid changes in the ACD11 protein’s highly conserved domains are linked to autoimmune symptoms including constitutive defensive responses and necrosis without pathogen awareness. The molecular aspect of the aberrant activity of the ACD11 protein is difficult to ascertain. The purpose of our study was to find the most deleterious mutation position in the ACD11 protein and correlate them with their abnormal expression pattern. Using several computational methods, we discovered PCD vulnerable single nucleotide polymorphisms (SNPs) in ACD11. We analysed the RNA-Seq data, identified the detrimental nonsynonymous SNPs (nsSNP), built genetically mutated protein structures and used molecular docking to assess the impact of mutation. Our results demonstrated that the A15T and A39D mutations in the GLTP domain were likely to be extremely detrimental mutations that inhibit the expression of the ACD11 protein domain by destabilizing its composition, as well as disrupt its catalytic effectiveness. When compared to the A15T mutant, the A39D mutant was more likely to destabilize the protein structure. In conclusion, these mutants can aid in the better understanding of the vast pool of PCD susceptibilities connected to ACD11 gene GLTP domain activation.  相似文献   
5.
Autohydrolysis is a hot water pretreatment to extract soluble components from wood that can be used prior to converting the woody residuals into paper, wood products, fuel, or other goods. In this study, mixed softwood chips were autohydrolyzed in hot water at 150, 160, 170, and 180 °C for 1 and 2 h residence times. The objective was to understand the tradeoff between the extraction of fermentable sugar and the residual solid total energy of combustion quantitatively. This process strategy will be referred to as “value prior to combustion”. High-performance liquid chromatography was used to determine chemical compositions (sugars and byproducts such as acetic acid, furfural, and hydroxymethylfurfural) of the extracted liquid and residuals; a bomb calorimeter was used to measure the heating value of original wood and solid residue. As the autohydrolysis temperature increased, material balances of the system indicated higher volatile byproducts loss. More hemicelluloses were solubilized by the hot water extraction process at higher temperatures and longer residence times, and a greater degree of sugar degradation was also observed. The maximum sugar yield was determined to occur at conditions of 170 °C for 2 h, during which 13 g of sugar was recovered from the extract out of 100 g of oven-dried wood. The heating value of the solid residues after extraction was greater than the original wood. The total energy content of the solid residual after extraction ranged from 85 to 98 % of the original energy content of the feed with higher temperatures reducing the total energy content.  相似文献   
6.
Intracellular phospholipase A(2) (PLA(2)) is responsible for releasing arachidonic acid from cellular phospholipids, and is thought to be the first step in eicosanoid biosynthesis. Intracellular PLA(2)s have been characterized in fat body and hemocytes from tobacco hornworms, Manduca sexta. Here we show that bacterial challenge stimulated increased PLA(2) activity in isolated hemocyte preparations, relative to control hemocyte preparations that were challenged with water. The increased activity was detected as early as 15 s post-challenge and lasted for at least 1 h. The increased activity depended on a minimum bacterial challenge dose, and was inhibited in reactions conducted in the presence of oleyoxyethylphosphorylcholine, a site-specific PLA(2) inhibitor. In independent experiments with serum prepared from whole hemolymph, we found no PLA(2) activity was secreted into serum during the first 24 h following bacterial infection. We infer that a hemocytic intracellular PLA(2) activity is increased immediately an infection is detected. The significance of this enzyme lies in its role in launching the biosynthesis of eicosanoids, which mediate cellular immune reactions to bacterial infection.  相似文献   
7.
The genomes of Vibrio cholerae O1 Matlab variant MJ-1236, Mozambique O1 El Tor variant B33, and altered O1 El Tor CIRS101 were sequenced. All three strains were found to belong to the phylocore group 1 clade of V. cholerae, which includes the 7th-pandemic O1 El Tor and serogroup O139 isolates, despite displaying certain characteristics of the classical biotype. All three strains were found to harbor a hybrid variant of CTXΦ and an integrative conjugative element (ICE), leading to their establishment as successful clinical clones and the displacement of prototypical O1 El Tor. The absence of strain- and group-specific genomic islands, some of which appear to be prophages and phage-like elements, seems to be the most likely factor in the recent establishment of dominance of V. cholerae CIRS101 over the other two hybrid strains.Vibrio cholerae, a bacterium autochthonous to the aquatic environment, is the causative agent of cholera, a life-threatening disease that causes severe, watery diarrhea. Cholera bacteria are serogrouped based on their somatic O antigens, with more than 200 serogroups identified to date (6). Only toxigenic strains of serogroups O1 and O139 have been identified as agents of cholera epidemics and pandemics; serogroups other than O1 and O139 have the potential to cause mild gastroenteritis or, rarely, local outbreaks. Genes coding for cholera toxin (CTX), ctxAB, and other virulence factors have been shown to reside in bacteriophages and various mobile genetic elements. In addition, V. cholerae serogroup O1 is differentiated into two biotypes, classical and El Tor, by a combination of biochemical traits, by sensitivity to biotype-specific bacteriophages, and more recently by nucleotide sequencing of specific genes and by molecular typing (5, 17, 19).There have been seven pandemics of cholera recorded throughout human history. The seventh and current pandemic began in 1961 in the Indonesian island of Sulawesi and subsequently spread to Asia, Africa, and Latin America; the six previous pandemics are believed to have originated in the Indian subcontinent. Isolates of the sixth pandemic were almost exclusively of the O1 classical biotype, whereas the current (seventh) pandemic is dominated by the V. cholerae O1 El Tor biotype as the causative agent, a transition occurring between 1923 and 1961. Today, the disease continues to remain a scourge in developing countries, confounded by the fact that V. cholerae is native to estuaries and river systems throughout the world (8).Over the past 20 years, several new epidemic lineages of V. cholerae O1 El Tor have emerged (or reemerged). For example, in 1992, a new serogroup, namely, O139 of V. cholerae, was identified as the cause of epidemic cholera in India and Bangladesh (25). The initial concern was that a new pandemic was beginning; however, the geographic range of V. cholerae O139 is currently restricted to Asia. Additionally, V. cholerae O1 hybrids and altered El Tor variants have been isolated repeatedly in Bangladesh (Matlab) (23, 24) and Mozambique (1). Altered V. cholerae O1 El Tor isolates produce cholera toxin of the classical biotype but can be biotyped as El Tor by conventional phenotypic assays, whereas V. cholerae O1 hybrid variants cannot be biotyped based on phenotypic tests and can produce cholera toxin of either biotype. These new variants have subsequently replaced the prototype seventh-pandemic V. cholerae O1 El Tor strains in Asia and Africa, with respect to frequency of isolation from clinical cases of cholera (27).Here, we report the genome sequence of three V. cholerae O1 variants, MJ-1236, a Matlab type I hybrid variant from Bangladesh that cannot be biotyped by conventional methods, CIRS101, an altered O1 El Tor isolate from Bangladesh which harbors ctxB of classical origin, and B33, an altered O1 El Tor isolate from Mozambique which harbors classical CTXΦ, and we compare their genomes with prototype El Tor and classical genomes. From an epidemiological viewpoint, among the three variants characterized in this study, V. cholerae CIRS101 is currently the most “successful” in that strains belonging to this type have virtually replaced the prototype El Tor in Asia and many parts of Africa, notably East Africa. This study, therefore, gives us a unique opportunity to understand why V. cholerae CIRS101 is currently the most successful El Tor variant.  相似文献   
8.
Objective: The aim of this study was to investigate effect of loss weight on P wave dispersion in obese subjects. Research Methods and Procedures: After a 12‐week weight loss program (diet and medical therapy), a total of 30 (24 women and six men) obese subjects who had lost at least 10% of their original weight were included in the present study. All subjects underwent a routine standard 12‐lead surface electrocardiogram. Electrocardiograms were transferred to a personal computer by a scanner and then magnified 400 times by Adobe Photoshop software (Adobe Systems, Mountain View, CA). P wave dispersion, which is also defined as the difference between the maximum P wave duration and the minimum P wave duration, was also calculated. Results: After a 12‐week weight loss program, BMI (p < 0.001), maximum P wave duration (p < 0.001), and P wave dispersion (p < 0.001) significantly decreased. The mean percentage of weight loss was 13% (10% to 20.3%). The decrease in the level of P wave dispersion (21 ± 10 and 7 ± 12 ms, p < 0.002) was more prominent in Group II (≥12% loss of their original weight) than Group I (<12% loss of their original weight) after the weight loss program. A statistically significant correlation between decrease in the level of P wave dispersion and percentage of weight loss was found (r = 0.624, p < 0.001). Discussion: Substantial weight loss in obese subjects is associated with a decrease of P wave duration and dispersion. Therefore, these observations suggest that substantial weight loss is associated with improvement in atrial repolarization abnormalities in obese subjects.  相似文献   
9.
Hypertension is a major health problem with increasing prevalence around the world. Tannic acid is water-soluble polyphenol that is present in tea, green tea, coffee, red wine, nuts, fruits and many plant foods. It has been reported to serve as an antioxidant or a pro-oxidant depending on the type of cells and its concentration. The purpose of our study was to evaluate the effect of tannic acid on systolic blood pressure, oxidative stress and some urinary parameters in the rat model of essential hypertension. Blood pressures of all rats were measured using the tail-cuff method. The nitric oxide synthase inhibitor N (omega)-nitro-L-arginine was administered orally at a dose of 0.5 g/l/day for 15 days to rats in order to create an animal model of hypertension. Tannic acid was intraperitoneally injected at a dose of 50 mg/kg for 15 days. Superoxide dismutase, catalase activity and the concentration of malondialdehyde (MDA) were determined in blood plasma and homogenates of heart, liver and kidney. In order to evaluate renal functions, urine pH, urine volume, urine creatine, uric acid, and urea nitrogen values were measured. Compared with the hypertension group, a decrease in MDA concentrations of heart tissue (p < 0.01), urea nitrogen values (p < 0.01) and urine volumes (p < 0.001) were established in hypertension + tannic acid group. There was also a decrease in blood pressure values (20th and 30th days) of this group, but there was no a statistical difference according to hypertension group. The findings of our research show the effect of tannic acid in lowering blood pressure in hypertensive rats.  相似文献   
10.
Water buffalo lactoperoxidase (WBLP) was purified with Amberlite CG 50 H+ resin, CM Sephadex C-50 ion-exchange chromatography, and Sephadex G-100 gel filtration chromatography from skim milk. All purification steps of the WBLP were shown with SDS-PAGE and Rz (A412/A280) controlled the purification degree of the enzyme. Rz value for the purified WBLP was 0.8. To determine purification steps and kinetic properties, the activity of enzyme was measured by using 2,2-azino-bis-(3-ethylbenzthiazoline-6 sulfonic acid) diammonium salt (ABTS) as a choromogenic substrate at pH=6. Km, Vmax, optimum pH, and optimum temperature for the WBLP were found by means of graphics for ABTS as substrates. Optimum pH and optimum temperature of the WBLP were 6 and 60 degrees C, respectively. Km value at optimum pH and optimum temperature for the WBLP was 0.82 mM. Vmax value at optimum pH and optimum temperature was 13.7 micromol/mL x min. Km value at optimum pH and 25 degrees C for the WBLP was 0.77 mM. Vmax value at optimum pH and 25 degrees C was 4.83 micromol/mL x min. The purified WBLP was found to have high antibacterial activity in a thiocynate-H2O2 medium for some pathogenic bacteria, such as Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginose, Shigella sonnei, Staphylococcus saphrophyticus, Staphylococcus epidermidis, and Shigella dysenteriae and compared with well known antibacterial substances such as tetracycline, penicillin, and netilmicine.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号