首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   197篇
  免费   28篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2017年   2篇
  2016年   5篇
  2015年   3篇
  2014年   7篇
  2013年   15篇
  2012年   18篇
  2011年   16篇
  2010年   8篇
  2009年   8篇
  2008年   10篇
  2007年   14篇
  2006年   18篇
  2005年   16篇
  2004年   17篇
  2003年   13篇
  2002年   14篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   3篇
  1997年   2篇
  1996年   1篇
  1995年   4篇
  1994年   1篇
  1993年   3篇
  1992年   3篇
  1991年   2篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1977年   1篇
排序方式: 共有225条查询结果,搜索用时 31 毫秒
81.
Numerous microbes inhabit the mammalian intestinal track and strongly impact host physiology; however, our understanding of this ecosystem remains limited owing to the high complexity of the microbial community and the presence of numerous non-culturable microbes. Segmented filamentous bacteria (SFBs), which are clostridia-related Gram-positive bacteria, are among such non-culturable populations and are well known for their unique morphology and tight attachment to intestinal epithelial cells. Recent studies have revealed that SFBs play crucial roles in the post-natal maturation of gut immune function, especially the induction of Th17 lymphocytes. Here, we report the complete genome sequence of mouse SFBs. The genome, which comprises a single circular chromosome of 1 620 005 bp, lacks genes for the biosynthesis of almost all amino acids, vitamins/cofactors and nucleotides, but contains a full set of genes for sporulation/germination and, unexpectedly, for chemotaxis/flagella-based motility. These findings suggest a triphasic lifestyle of the SFB, which comprises two types of vegetative (swimming and epicellular parasitic) phases and a dormant (spore) phase. Furthermore, SFBs encode four types of flagellin, three of which are recognized by Toll-like receptor 5 and could elicit the innate immune response. Our results reveal the non-culturability, lifestyle and immunostimulation mechanisms of SFBs and provide a genetic basis for the future development of the SFB cultivation and gene-manipulation techniques.  相似文献   
82.
Developmental prolongation is thought to contribute to the remarkable brain enlargement observed in modern humans (Homo sapiens). However, the developmental trajectories of cerebral tissues have not been explored in chimpanzees (Pan troglodytes), even though they are our closest living relatives. To address this lack of information, the development of cerebral tissues was tracked in growing chimpanzees during infancy and the juvenile stage, using three-dimensional magnetic resonance imaging and compared with that of humans and rhesus macaques (Macaca mulatta). Overall, cerebral development in chimpanzees demonstrated less maturity and a more protracted course during prepuberty, as observed in humans but not in macaques. However, the rapid increase in cerebral total volume and proportional dynamic change in the cerebral tissue in humans during early infancy, when white matter volume increases dramatically, did not occur in chimpanzees. A dynamic reorganization of cerebral tissues of the brain during early infancy, driven mainly by enhancement of neuronal connectivity, is likely to have emerged in the human lineage after the split between humans and chimpanzees and to have promoted the increase in brain volume in humans. Our findings may lead to powerful insights into the ontogenetic mechanism underlying human brain enlargement.  相似文献   
83.
84.
A novel aminopeptidase, Aminopeptidase T (APase T), was purified from porcine skeletal muscle following successive column chromatography: twice on DEAE-cellulose, hydroxyapatite, and Sephacryl S-200 HR using Leu-β-naphthylamide (LeuNap) as a substrate. The molecular mass of the enzyme was 69 kDa on SDS-PAGE. The optimum pH towards LeuNap of the enzyme was about 7. The enzyme activity was strongly inhibited by bestatin and was negatively affected by ethylenediaminetetraacetic acid (EDTA). Chlorine-activated APase T liberated Leu, Ala, Met, Pro, and Arg from Nap derivatives. The APase T gene consisted of an ORF of 1,836 bp encoding a protein of 611 amino acid residues. The APase T was highly homologous to bovine, human, and mouse Leukotriene A(4) hydrolase (LTA(4)H), a bifunctional enzyme which exhibits APase and epoxide hydrolase activity.  相似文献   
85.
A comparison of developmental patterns of white matter (WM) within the prefrontal region between humans and nonhuman primates is key to understanding human brain evolution. WM mediates complex cognitive processes and has reciprocal connections with posterior processing regions [1, 2]. Although the developmental pattern of prefrontal WM in macaques differs markedly from that in humans [3], this has not been explored in our closest evolutionary relative, the chimpanzee. The present longitudinal study of magnetic resonance imaging scans demonstrated that the prefrontal WM volume in chimpanzees was immature and had not reached the adult value during prepuberty, as observed in humans but not in macaques. However, the rate of prefrontal WM volume increase during infancy was slower in chimpanzees than in humans. These results suggest that a less mature and more protracted elaboration of neuronal connections in the prefrontal portion of the developing brain existed in the last common ancestor of chimpanzees and humans, and that this served to enhance the impact of postnatal experiences on neuronal connectivity. Furthermore, the rapid development of the human prefrontal WM during infancy may help the development of complex social interactions, as well as the acquisition of experience-dependent knowledge and skills to shape neuronal connectivity.  相似文献   
86.
We have identified and characterized a structurally novel succinyl-CoA synthetase (SCS) from the hyperthermophilic Archaea Thermococcus kodakaraensis. The presence of an SCS completes the metabolic pathway from glutamate to succinate in Thermococcales, which had not been clarified because of the absence of classical SCS homologs on their genomes. The SCS from T. kodakaraensis (SCS(Tk)) is a heteromeric enzyme (alpha(2)beta(2)) encoded by TK1880 (alpha-subunit) and TK0943 (beta-subunit). Although both SCS(Tk) and classical SCSs harbor the five domains present in enzymes of the acyl-CoA synthetase (nucleoside diphosphate-forming) superfamily, the domain order and distribution among subunits in SCS(Tk) (alpha-subunit, domains 1-2-5; beta-subunit, domains 3-4) are distinct from those of classical SCSs (alpha-subunit, domains 1-2; beta-subunit, domains 3-4-5) and instead resemble the acetyl-CoA synthetases from Pyrococcus furiosus (ACSs I(Pf) and II(Pf)). Comparison of the four Thermococcales genomes revealed that each strain harbors five alpha- and two beta-subunit homologs. Sequence similarity suggests that the beta-subunit of SCS(Tk) is also a component of the presumed ACS II from T. kodakaraensis (ACS II(Tk)). We coexpressed the alpha/beta-genes of SCS(Tk) (TK1880/TK0943) and of ACS II(Tk) (TK0139/TK0943). ACS II(Tk) recognizes a broad range of hydrophobic/aromatic acid compounds, as is the case with ACS II(Pf), whereas SCS(Tk) displays a distinct and relatively strict substrate specificity for several acids, including succinate. This indicates that the alpha-subunits are responsible for the distinct substrate specificities of SCS(Tk) and ACS II(Tk).  相似文献   
87.
Hippocampal mossy fibers project preferentially to the stratum lucidum, the proximal-most lamina of the suprapyramidal region of CA3. The molecular mechanisms that govern this lamina-restricted projection are still unknown. We examined the projection pattern of mossy fibers in mutant mice for semaphorin receptors plexin-A2 and plexin-A4, and their ligand, the transmembrane semaphorin Sema6A. We found that plexin-A2 deficiency causes a shift of mossy fibers from the suprapyramidal region to the infra- and intrapyramidal regions, while plexin-A4 deficiency induces inappropriate spreading of mossy fibers within CA3. We also report that the plexin-A2 loss-of-function phenotype is genetically suppressed by Sema6A loss of function. Based on these results, we propose a model for the lamina-restricted projection of mossy fibers: the expression of plexin-A4 on mossy fibers prevents them from entering the Sema6A-expressing suprapyramidal region of CA3 and restricts them to the proximal-most part, where Sema6A repulsive activity is attenuated by plexin-A2.  相似文献   
88.
β-Alanine is a precursor for coenzyme A (CoA) biosynthesis and is a substrate for the bacterial/eukaryotic pantothenate synthetase and archaeal phosphopantothenate synthetase. β-Alanine is synthesized through various enzymes/pathways in bacteria and eukaryotes, including the direct decarboxylation of Asp by aspartate 1-decarboxylase (ADC), the degradation of pyrimidine, or the oxidation of polyamines. However, in most archaea, homologs of these enzymes are not present; thus, the mechanisms of β-alanine biosynthesis remain unclear. Here, we performed a biochemical and genetic study on a glutamate decarboxylase (GAD) homolog encoded by TK1814 from the hyperthermophilic archaeon Thermococcus kodakarensis. GADs are distributed in all three domains of life, generally catalyzing the decarboxylation of Glu to γ-aminobutyrate (GABA). The recombinant TK1814 protein displayed not only GAD activity but also ADC activity using pyridoxal 5′-phosphate as a cofactor. Kinetic studies revealed that the TK1814 protein prefers Asp as its substrate rather than Glu, with nearly a 20-fold difference in catalytic efficiency. Gene disruption of TK1814 resulted in a strain that could not grow in standard medium. Addition of β-alanine, 4′-phosphopantothenate, or CoA complemented the growth defect, whereas GABA could not. Our results provide genetic evidence that TK1814 functions as an ADC in T. kodakarensis, providing the β-alanine necessary for CoA biosynthesis. The results also suggest that the GAD activity of TK1814 is not necessary for growth, at least under the conditions applied in this study. TK1814 homologs are distributed in a wide range of archaea and may be responsible for β-alanine biosynthesis in these organisms.  相似文献   
89.
The large subunit of the [NiFe] hydrogenases harbors a NiFe(CN)(2)(CO) cluster. Maturation proteins HypA, B, C, D, E, and F are required for the NiFe cluster biosynthesis. While the maturation machinery has been hitherto studied intensively, little is known about interactions between the Hyp proteins and the large subunit of the [NiFe] hydrogenase. In this study, we have purified and characterized the cytosolic [NiFe] hydrogenase large subunit HyhL from Thermococcus kodakarensis (Tk-HyhL). Tk-HyhL exists in equilibrium between monomeric and dimeric forms. In vitro interaction analyses showed that Tk-HyhL monomer forms a tight complex with Tk-HypA and weakly interacts with Tk-HypC. The expected ternary complex formation was not detected. These observations reflect a diversity in the mechanism of Ni insertion in [NiFe] hydrogenase maturation depending on the organism.  相似文献   
90.
In animal walking, the gravitational potential and kinetic energy of the center of mass (COM) fluctuates out-of-phase to reduce the energetic cost of locomotion via an inverted pendulum mechanism, and, in canine quadrupedal walking, up to 70% of the mechanical energy can be recovered. However, the rate of energy recovery for quadrupedal walking in primates has been reported to be comparatively lower. The present study analyzed fluctuations in the potential and kinetic energy of the COM during quadrupedal walking in the Japanese macaque to clarify the mechanisms underlying this inefficient utilization of the inverted pendulum mechanism in primates. Monkeys walked on a wooden walkway at a self-selected speed, and ground reaction forces were measured, using a force platform, to calculate patterns of mechanical energy fluctuation and rates of energy recovery. Our results demonstrated that rates of energy recovery for quadrupedal walking in Japanese macaques were approximately 30–50%, much smaller than those reported for dogs. Comparisons of the patterns of mechanical energy fluctuation suggested that the potential and kinetic energies oscillated relatively more in-phase, and amplitudes did not attain near equality during quadrupedal walking in Japanese macaques, possibly because of greater weight support (reaction force) of the hindlimbs and more protracted forelimbs at touchdown in the Japanese macaque, two of the three commonly accepted locomotor characteristics distinguishing primates from non-primate mammals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号