首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1011篇
  免费   50篇
  国内免费   2篇
  1063篇
  2022年   7篇
  2021年   5篇
  2019年   9篇
  2018年   10篇
  2017年   5篇
  2016年   16篇
  2015年   22篇
  2014年   24篇
  2013年   113篇
  2012年   40篇
  2011年   53篇
  2010年   29篇
  2009年   40篇
  2008年   56篇
  2007年   41篇
  2006年   46篇
  2005年   57篇
  2004年   81篇
  2003年   67篇
  2002年   59篇
  2001年   20篇
  2000年   15篇
  1999年   9篇
  1998年   13篇
  1997年   12篇
  1996年   8篇
  1995年   11篇
  1994年   10篇
  1993年   10篇
  1992年   18篇
  1991年   13篇
  1990年   5篇
  1989年   12篇
  1988年   6篇
  1987年   8篇
  1986年   10篇
  1985年   6篇
  1984年   6篇
  1983年   4篇
  1982年   10篇
  1981年   10篇
  1980年   10篇
  1979年   7篇
  1978年   5篇
  1977年   6篇
  1976年   4篇
  1973年   6篇
  1970年   6篇
  1968年   3篇
  1967年   3篇
排序方式: 共有1063条查询结果,搜索用时 0 毫秒
101.
We have reported that acetic acid (AcOH) intake suppresses body fat mass and up-regulates the genes involved in fatty acid oxidation, but it is not clear whether the suppression of body fat mass by AcOH administration is due to an increase in energy expenditure (EE). In this study, we investigated to determine whether a single oral administration of AcOH would increase EE in C57BL/6J mice treated with 1.5% AcOH. The AcOH treatment group had significantly higher oxygen consumption (VO(2)), EE, and fat oxidation (FAT) than the water treatment group. These results suggest that a single administration of AcOH increases EE, resulting in suppression of body fat mass.  相似文献   
102.
We evaluated the genetic structure of 16 Betula maximowicziana populations in the Chichibu mountain range, central Japan, located within a 25-km radius; all but two populations were at altitudes of 1,100–1,400 m. The results indicate the effects of geographic topology on the landscape genetic structure of the populations and should facilitate the development of local-scale strategies to conserve and manage them. Analyses involving 11 nuclear simple sequence repeat loci showed that most populations had similar intrapopulation genetic diversity parameters. Population differentiation (F ST = 0.021, GST = 0.033) parameters for the populations examined were low but were relatively high compared to those obtained in a previous study covering populations in a much larger area with a radius of approximately 1,000 km (F ST = 0.062, GST = 0.102). Three populations (Iriyama, Kanayamasawa, and Nishizawa) were differentiated from the other populations by Monmonier’s and spatial analysis of molecular variance algorithms or by STRUCTURE analysis. Since a high mountain ridge (nearly 2,000 m) separates the Kanayamasawa and Nishizawa populations from the other 14 populations and the Kanayamasawa and Nishizawa populations are themselves separated by another mountain ridge, the genetic structure appears to be partly due to mountain ridges acting as genetic barriers and restricting gene flow. However, the Iriyama population is genetically different but not separated by any clear geographic barrier. These results show that the landscape genetic structure is complex in the mountain range and we need to pay attention, within landscape genetic studies and conservation programs, to geographic barriers and local population differentiation.  相似文献   
103.
To cope with life-threatening high osmolarity, yeast activates the high-osmolarity glycerol (HOG) signaling pathway, whose core element is the Hog1 MAP kinase cascade. Activated Hog1 regulates the cell cycle, protein translation, and gene expression. Upstream of the HOG pathway are functionally redundant SLN1 and SHO1 signaling branches. However, neither the osmosensor nor the signal generator of the SHO1 branch has been clearly defined. Here, we show that the mucin-like transmembrane proteins Hkr1 and Msb2 are the potential osmosensors for the SHO1 branch. Hyperactive forms of Hkr1 and Msb2 can activate the HOG pathway only in the presence of Sho1, whereas a hyperactive Sho1 mutant activates the HOG pathway in the absence of both Hkr1 and Msb2, indicating that Hkr1 and Msb2 are the most upstream elements known so far in the SHO1 branch. Hkr1 and Msb2 individually form a complex with Sho1, and, upon high external osmolarity stress, appear to induce Sho1 to generate an intracellular signal. Furthermore, Msb2, but not Hkr1, can also generate an intracellular signal in a Sho1-independent manner.  相似文献   
104.
The overall architecture of IncP-1 plasmids is very conserved in that the accessory genes are typically located in one or two specific regions: between oriV and trfA and between the tra and trb operons. Various hypotheses have been formulated to explain this, but none have been tested experimentally. We investigated whether this structural similarity is due to region-specific transposition alone or also is reliant on selection for plasmids with insertions limited to these two regions. We first examined the transposition of Tn21Km into IncP-1beta plasmid pBP136 and found that most Tn21Km insertions (67%) were located around oriV. A similar experiment using the oriV region of IncP-1beta plasmid pUO1 confirmed these results. We then tested the transferability, stability, and fitness cost of different pBP136 derivatives to determine if impairment of these key plasmid characters explained the conserved plasmid architecture. Most of the pBP136 derivatives with insertions in transfer genes were no longer transferable. The plasmids with insertions in the oriV-trfA and tra-trb regions were more stable than other plasmid variants, and one of these also showed a significantly lower fitness cost. In addition, our detailed sequence analysis of IncP-1 plasmids showed that Tn402/5053-like transposons are situated predominantly between the tra and trb operons and close to the putative resolution site for the ParA resolvase, a potential hot spot for those transposons. Our study presents the first empirical evidence that region-specific insertion of transposons in combination with selection for transferable and stable plasmids explains the structural similarity of IncP-1 plasmids.  相似文献   
105.
Bulky adducts are DNA lesions generated in response to environmental agents including benzo[a]pyrene (a combustion product) and solar ultraviolet radiation. Error-prone replication of adducted DNA can cause mutations, which may result in cancer. To minimize the detrimental effects of bulky adducts and other DNA lesions, S-phase checkpoint mechanisms sense DNA damage and integrate DNA repair with ongoing DNA replication. The essential protein kinase Chk1 mediates the S-phase checkpoint, inhibiting initiation of new DNA synthesis and promoting stabilization and recovery of stalled replication forks. Here we review the mechanisms by which Chk1 is activated in response to bulky adducts and potential mechanisms by which Chk1 signaling inhibits the initiation stage of DNA synthesis. Additionally, we discuss mechanisms by which Chk1 signaling facilitates bypass of bulky lesions by specialized Y-family DNA polymerases, thereby attenuating checkpoint signaling and allowing resumption of normal cell cycle progression.  相似文献   
106.
The activity of membrane proteins such as Na,K-ATPase depends strongly on the surrounding lipid environment. Interactions can be annular, depending on the physical properties of the membrane, or specific with lipids bound in pockets between transmembrane domains. This paper describes three specific lipid-protein interactions using purified recombinant Na,K-ATPase. (a) Thermal stability of the Na,K-ATPase depends crucially on a specific interaction with 18:0/18:1 phosphatidylserine (1-stearoyl-2-oleoyl-sn-glycero-3-phospho-l-serine; SOPS) and cholesterol, which strongly amplifies stabilization. We show here that cholesterol associates with SOPS, FXYD1, and the α subunit between trans-membrane segments αTM8 and -10 to stabilize the protein. (b) Polyunsaturated neutral lipids stimulate Na,K-ATPase turnover by >60%. A screen of the lipid specificity showed that 18:0/20:4 and 18:0/22:6 phosphatidylethanolamine (PE) are the optimal phospholipids for this effect. (c) Saturated phosphatidylcholine and sphingomyelin, but not saturated phosphatidylserine or PE, inhibit Na,K-ATPase activity by 70–80%. This effect depends strongly on the presence of cholesterol. Analysis of the Na,K-ATPase activity and E1-E2 conformational transitions reveals the kinetic mechanisms of these effects. Both stimulatory and inhibitory lipids poise the conformational equilibrium toward E2, but their detailed mechanisms of action are different. PE accelerates the rate of E1 → E2P but does not affect E2(2K)ATP → E13NaATP, whereas sphingomyelin inhibits the rate of E2(2K)ATP → E13NaATP, with very little effect on E1 → E2P. We discuss these lipid effects in relation to recent crystal structures of Na,K-ATPase and propose that there are three separate sites for the specific lipid interactions, with potential physiological roles to regulate activity and stability of the pump.  相似文献   
107.

Background

Clostridium difficile and C. sordellii are two anaerobic, spore forming, gram positive pathogens with a broad host range and the ability to cause lethal infections. Despite strong similarities between the two Clostridial strains, differences in their host tissue preference place C. difficile infections in the gastrointestinal tract and C. sordellii infections in soft tissues.

Results

In this study, to improve our understanding of C. sordellii and C. difficile virulence and pathogenesis, we have performed a comparative genomic and phenomic analysis of the two. The global phenomes of C. difficile and C. sordellii were compared using Biolog Phenotype microarrays. When compared to C. difficile, C. sordellii was found to better utilize more complex sources of carbon and nitrogen, including peptides. Phenotype microarray comparison also revealed that C. sordellii was better able to grow in acidic pH conditions. Using next generation sequencing technology, we determined the draft genome of C. sordellii strain 8483 and performed comparative genome analysis with C. difficile and other Clostridial genomes. Comparative genome analysis revealed the presence of several enzymes, including the urease gene cluster, specific to the C. sordellii genome that confer the ability of expanded peptide utilization and survival in acidic pH.

Conclusions

The identified phenotypes of C. sordellii might be important in causing wound and vaginal infections respectively. Proteins involved in the metabolic differences between C. sordellii and C. difficile should be targets for further studies aimed at understanding C. difficile and C. sordellii infection site specificity and pathogenesis.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1663-5) contains supplementary material, which is available to authorized users.  相似文献   
108.
The single-nucleotide polymorphisms (SNPs) in the human DNase I gene (DNASE1) might be involved in susceptibility to some common diseases; however, only limited population data are available. Further, the effects of these SNPs on in vivo DNase I activity remain unknown. The genotype and haplotype of all the SNPs in DNASE1 were determined in 3 ethnic groups including 14 populations using newly developed methods. Together with our previous data on the nonsynonymous SNPs, two major haplotypes based on the five exonic SNPs were identified; genetic diversity in the Asian population was low. Among 10 SNPs, other than exonic SNPs in the gene, only 3 were polymorphic among all the populations. Haplotype distribution, based on all the polymorphic SNPs, was clarified to be generally varied in an ethnic-dependent manner. Thus, the genetic aspects of DNASE1 with regard to all the SNPs in wide-ranging ethnic groups could be first demonstrated. Further, there was no correlation of all the polymorphic SNPs other than nonsynonymous ones with serum DNase I activity levels. Polymorphic SNPs other than the exonic SNPs might not be directly related to common diseases through alterations in in vivo levels of the activity.  相似文献   
109.
Spiroacetal compounds are ubiquitous in nature, and their stereospecific structures are responsible for diverse pharmaceutical activities. Elucidation of the biosynthetic mechanisms that are involved in spiroacetal formation will open the door to efficient generation of stereospecific structures that are otherwise hard to synthesize chemically. However, the biosynthesis of these compounds is poorly understood, owing to difficulties in identifying the responsible enzymes and analyzing unstable intermediates. Here we comprehensively describe the spiroacetal formation involved in the biosynthesis of reveromycin A, which inhibits bone resorption and bone metastases of tumor cells by inducing apoptosis in osteoclasts. We performed gene disruption, systematic metabolite analysis, feeding of labeled precursors and conversion studies with recombinant enzymes. We identified two key enzymes, dihydroxy ketone synthase and spiroacetal synthase, and showed in vitro reconstruction of the stereospecific spiroacetal structure from a stable acyclic precursor. Our findings provide insights into the creation of a variety of biologically active spiroacetal compounds for drug leads.  相似文献   
110.
A nuclear transformation system for the centric diatom Chaetoceros sp. has been established using two plasmids pTpfcp/nat and pTpNR/green fluorescent protein (GFP) that had been used for Thalassiosira pseudonana transformation. These contain the nourseothricin resistance gene (nat) with the fucoxanthin chlorophyll a/c binding protein (fcp) promoter/terminator from T. pseudonana and the enhanced green fluorescent protein gene (egfp), with the nitrate reductase (NR) promoter/terminator from T. pseudonana, respectively. Transformants were recovered in the presence of the antibiotic nourseothricin. One to four copies of both nat and egfp genes were integrated into genomic DNA of the transformants. Transformation efficiency was 1.5–6.0 transformants per 108 cells. This work is the first report of stable genetic transformation of Chaetoceros, which is important as not only a constituent member of marine ecosystem but also feed for aquaculture.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号