首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   919篇
  免费   52篇
  国内免费   2篇
  2021年   3篇
  2019年   6篇
  2018年   7篇
  2017年   4篇
  2016年   12篇
  2015年   15篇
  2014年   18篇
  2013年   106篇
  2012年   31篇
  2011年   52篇
  2010年   25篇
  2009年   37篇
  2008年   56篇
  2007年   39篇
  2006年   46篇
  2005年   52篇
  2004年   74篇
  2003年   64篇
  2002年   53篇
  2001年   20篇
  2000年   12篇
  1999年   9篇
  1998年   11篇
  1997年   10篇
  1996年   8篇
  1995年   10篇
  1994年   9篇
  1993年   10篇
  1992年   12篇
  1991年   8篇
  1990年   6篇
  1989年   11篇
  1988年   6篇
  1987年   11篇
  1986年   13篇
  1985年   7篇
  1984年   9篇
  1983年   6篇
  1982年   9篇
  1981年   11篇
  1980年   12篇
  1979年   4篇
  1978年   6篇
  1977年   6篇
  1976年   5篇
  1974年   4篇
  1973年   4篇
  1972年   3篇
  1971年   4篇
  1968年   4篇
排序方式: 共有973条查询结果,搜索用时 15 毫秒
131.
In vertebrate cells, the centrosome consists of a pair of centrioles and surrounding pericentriolar material. Using anti-Golgi 58K protein antibodies that recognize formiminotransferase cyclodeaminase (FTCD), we investigated its localization to the centrosome in various cultured cells and human oviductal secretory cells by immunohistochemistry. In addition to the Golgi apparatus, FTCD was localized to the centrosome, more abundantly around the mother centriole. The centrosome localization of FTCD continued throughout the cell cycle and was not disrupted after Golgi fragmentation, which was induced by colcemid and brefeldin A. Centriole microtubules are polyglutamylated and stable against tubulin depolymerizing drugs. FTCD in the centrosome may be associated with polyglutamylated residues of centriole microtubules and may play a role in providing centrioles with glutamate produced by cyclodeaminase domains of FTCD.  相似文献   
132.
133.
134.
The DNA synthesis across DNA lesions, termed translesion synthesis (TLS), is a complex process influenced by various factors. To investigate this process in mammalian cells, we examined TLS across a benzo[a]pyrene dihydrodiol epoxide-derived dG adduct (BPDE-dG) using a plasmid bearing a single BPDE-dG and genetically engineered mouse embryonic fibroblasts (MEFs). In wild-type MEFs, TLS was extremely miscoding (>90%) with G → T transversions being predominant. Knockout of the Rev1 gene decreased both the TLS efficiency and the miscoding frequency. Knockout of the Rev3L gene, coding for the catalytic subunit of pol ζ, caused even greater decreases in these two TLS parameters; almost all residual TLS were error-free. Thus, REV1 and pol ζ are critical to mutagenic, but not accurate, TLS across BPDE-dG. The introduction of human REV1 cDNA into Rev1(-/-) MEFs restored the mutagenic TLS, but a REV1 mutant lacking the C terminus did not. Yeast and mammalian three-hybrid assays revealed that the REV7 subunit of pol ζ mediated the interaction between REV3 and the REV1 C terminus. These results support the hypothesis that REV1 recruits pol ζ through the interaction with REV7. Our results also predict the existence of a minor REV1-independent pol ζ recruitment pathway. Finally, although mutagenic TLS across BPDE-dG largely depends on RAD18, experiments using Polk(-/-) Polh(-/-) Poli(-/-) triple-gene knockout MEFs unexpectedly revealed that another polymerase(s) could insert a nucleotide opposite BPDE-dG. This indicates that a non-Y family polymerase(s) can insert a nucleotide opposite BPDE-dG, but the subsequent extension from miscoding termini depends on REV1-polζ in a RAD18-dependent manner.  相似文献   
135.
Heterotetrameric sarcosine oxidase is a flavoprotein that catalyses the oxidative demethylation of sarcosine. It is thought that the dehydrogenated substrate is the anionic form of sarcosine. To verify this assumption, the rate of flavin-adenine dinucleotide (FAD) reduction (k(red)) was analysed using protiated and deuterated sarcosine (N-methyl-d(3)-Gly) at various pH values using stopped-flow method. By increasing the pH from 6.2 to 9.8, k(red) increased for both substrates and reached a plateau, but the pK(a) value (reflecting the ionization of the enzyme-substrate complex) was 6.8 and 7.1 for protiated and deuterated sarcosine, respectively, and the kinetic isotope effect of k(red) decreased from approximately 19 to 8, indicating deprotonation of the bound sarcosine. The k(red)/K(d) (K(d), sarcosine dissociation constant) increased with increasing pH and reached a plateau. The pK (reflecting the ionization of free enzyme or free sarcosine) was 7.0 for both substrates, suggesting deprotonation of the βLys358 residue, which has a pK(a) of 6.7, as the pK(a) of the free sarcosine amine proton was determined to be approximately 10.1. These results indicate that the amine proton of sarcosine is transferred to the unprotonated Lys residue in the enzyme-substrate complex.  相似文献   
136.
Ogata S  Miki T  Seino S  Tamai S  Kasai H  Nemoto T 《PloS one》2012,7(5):e37048
Noc2, a putative Rab effector, contributes to secretory-granule exocytosis in neuroendocrine and exocrine cells. Here, using two-photon excitation live-cell imaging, we investigated its role in Ca(2+)-dependent zymogen granule (ZG) exocytosis in pancreatic acinar cells from wild-type (WT) and Noc2-knockout (KO) mice. Imaging of a KO acinar cell revealed an expanded granular area, indicating ZG accumulation. In our spatiotemporal analysis of the ZG exocytosis induced by agonist (cholecystokinin or acetylcholine) stimulation, the location and rate of progress of ZG exocytosis did not differ significantly between the two strains. ZG exocytosis from KO acinar cells was seldom observed at physiological concentrations of agonists, but was normal (vs. WT) at high concentrations. Flash photolysis of a caged calcium compound confirmed the integrity of the fusion step of ZG exocytosis in KO acinar cells. The decreased ZG exocytosis present at physiological concentrations of agonists raised the possibility of impaired elicitation of calcium spikes. When calcium spikes were evoked in KO acinar cells by a high agonist concentration: (a) they always started at the apical portion and traveled to the basal portion, and (b) calcium oscillations over the 10 μM level were observed, as in WT acinar cells. At physiological concentrations of agonists, however, sufficient calcium spikes were not observed, suggesting an impaired [Ca(2+)](i)-increase mechanism in KO acinar cells. We propose that in pancreatic acinar cells, Noc2 is not indispensable for the membrane fusion of ZG per se, but instead performs a novel function favoring agonist-induced physiological [Ca(2+)](i) increases.  相似文献   
137.
The gnomefish (Scombrops boops) is a member of the percoid family Scombropidae, which includes a single genus and three to four species worldwide. Since little is known about the ecology of this species, here, sequencing analysis of the cytochrome b gene (1141 bp) in mitochondrial DNA detected 101 haplotypes from 186 individuals of S. boops collected from waters at seven localities around the Japanese archipelago. A single haplotype (Sb2) was the most abundant in the combined populations of S. boops from various localities. Genetic population structure analyses revealed no significant differences among these populations (Fst = - 0.0313-0.0195; Φst = - 0.0505-0.0615) with high haplotype diversity and low nucleotide diversity. This suggests that S. boops around the Japanese archipelago constitutes a single population, and indicates that the genetic structure of this population may be influenced by larval and egg dispersal in association with warm currents.  相似文献   
138.
Actinoplanes missouriensis Couch 1963 is a well-characterized member of the genus Actinoplanes, which is of morphological interest because its members typically produce sporangia containing motile spores. The sporangiospores are motile by means of flagella and exhibit chemotactic properties. It is of further interest that members of Actinoplanes are prolific sources of novel antibiotics, enzymes, and other bioactive compounds. Here, we describe the features of A. missouriensis 431T, together with the complete genome sequence and annotation. The 8,773,466 bp genome contains 8,125 protein-coding and 79 RNA genes.  相似文献   
139.
DNA fragmentation factor beta (DFFB) polypeptide, endonuclease G (EndoG), and Flap endonuclease-1 (FEN-1) are responsible for DNA fragmentation, a hallmark of apoptosis. Although the human homologs of these genes show three, four, and six nonsynonymous single-nucleotide polymorphisms (SNPs), respectively, data on their genotype distributions in populations worldwide are limited. In this context, the objectives of this study were to elucidate the genetic heterogeneity of all these SNPs in wide-ranging populations, and thereby to clarify the genetic background of these apoptosis-related endonucleases in human populations. We investigated the genotype distribution of their SNPs in 13 different populations of healthy Asians, Africans, and Caucasians using novel genotyping methods. Among the 13 SNPs in the 3 genes, only 3 were found to be polymorphic: R196K and K277R in the DFFB gene, and S12L in the EndoG gene. All 6 SNPs in the FEN-1 gene were entirely monoallelic. Although it remains unclear whether each SNP would exert any effect on endonuclease functions, these genes appear to exhibit low degree of genetic heterogeneity with regard to nonsynonymous SNPs. These findings allow us to conclude that human apoptosis-related endonucleases, similarly to other human DNase genes, revealed previously, are well conserved at the protein level during the course of human evolution.  相似文献   
140.
Four 2-phenylbenzotriazole (PBTA)-type compounds (PBTA-4, PBTA-6, PBTA-7, and PBTA-8) were identified as major mutagens in blue cotton/rayon-adsorbed substances collected at sites below textile dyeing factories or municipal water treatment plants treating domestic waste and effluents from textile dyeing factories in several rivers in Japan. The main purpose of this study is to understand the basis of the roles of human cytochrome P450 (CYP) and N-acetyltransferases (NATs) in genotoxic activation of PBTA derivatives. We compared the induction of umuC gene expression as a measure of genotoxicity using Salmonella typhimurium TA1535/pSK1002 (parental strain), NM2009 (bacterial O-acetyltransferase-overexpressing strain) established in our laboratories. PBTA-4, PBTA-6, PBTA-7, and PBTA-8 induced the umuC gene expression more strongly in the bacterial O-acetyltransferase-overproducing strain than in the parental strain in the presence of rat S9 mix. We determined the activation of PBTA derivatives by cDNA-based recombinant (Trichoplusia ni) systems expressing human or rat cytochrome P450 enzymes (P450 or CYP) and NADPH-P450 reductase using S. typhimurium NM2009. The results showed that human recombinant CYP1A1 enzyme was much more active than CYP1A2 and CYP3A4 in the genotoxic activation of PBTA-4, PBTA-6, PBTA-7, and PBTA-8. Similarly, rat recombinant CYP1A1 enzyme catalyzed the activation of these chemicals at high rates. alpha-Naphthoflavone, a known inhibitor of CYP1A1, was found to inhibit genotoxic activation caused by PBTA derivatives. We further determined the activation of PBTA derivatives using S. typhimurium NM6001 (human NAT1-expressing strain), S. typhimurium NM6002 (human NAT2-expressing strain), and S. typhimurium NM6000 (O-AT-deficient parent strain) in the presence of S9 mix. PBTA-4 showed almost similar sensitivity in the NAT1-expressing strain and the NAT2-expressing strain, although NAT2-expressing strain exhibited relatively higher sensitivity to PBTA-6, PBTA-7, and PBTA-8 than NAT1-expressing strain. The results support the view that O-acetylation by human NAT1 and NAT2 enzymes is involved in the genotoxic activation of PBTA compounds. These results demonstrate for the first time that human P4501A1 and NATs (NAT1 and NAT2) contribute significantly to the activation of PBTA-type compounds to genotoxic metabolites that induce umuC gene expression in S. typhimurium tester strains.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号