首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1259篇
  免费   94篇
  国内免费   2篇
  1355篇
  2022年   8篇
  2021年   8篇
  2019年   7篇
  2018年   9篇
  2017年   9篇
  2016年   17篇
  2015年   30篇
  2014年   33篇
  2013年   130篇
  2012年   58篇
  2011年   64篇
  2010年   34篇
  2009年   44篇
  2008年   70篇
  2007年   50篇
  2006年   63篇
  2005年   70篇
  2004年   90篇
  2003年   79篇
  2002年   70篇
  2001年   29篇
  2000年   21篇
  1999年   25篇
  1998年   15篇
  1997年   16篇
  1996年   16篇
  1995年   15篇
  1994年   16篇
  1993年   13篇
  1992年   23篇
  1991年   14篇
  1990年   15篇
  1989年   13篇
  1988年   12篇
  1987年   12篇
  1986年   15篇
  1985年   6篇
  1984年   9篇
  1983年   13篇
  1982年   12篇
  1981年   12篇
  1980年   10篇
  1979年   5篇
  1978年   10篇
  1977年   9篇
  1976年   8篇
  1974年   10篇
  1973年   6篇
  1970年   4篇
  1969年   4篇
排序方式: 共有1355条查询结果,搜索用时 15 毫秒
31.
Yeast cells can respond and adapt to osmotic stress. In our attempt to clarify the molecular mechanisms of cellular responses to osmotic stress, we cloned seven cDNAs for hyperosmolarity-responsive (HOR) genes from Saccharomyces cerevisiae by a differential screening method. Structural analysis of the clones revealed that those designated HOR1, HORS, HOR4, HOR5 and HOR6 encoded glycerol-3-phosphate dehydrogenase (Gpd1p), glucokinase (Glklp), hexose transporter (Hxtlp), heat-shock protein 12 (Hsp12p) and Na+, K+, Li+-ATPase (Enalp), respectively. HOR2 and HOR7 corresponded to novel genes. Gpdlp is a key enzyme in the synthesis of glycerol, which is a major osmoprotectant in S. cerevisiae. Cloning of HOR1/GPD1 as a HOR gene indicates that the accumulation of glycerol in yeast cells under hyperosmotic stress is, at least in part, caused by an increase in the level of GPDH protein. We performed a series of Northern blot analyses using HOR cDNAs as probes and RNAs prepared from cells grown under various conditions and from various mutant cells. The results suggested that all the HOR genes are regulated by common signal transduction pathways. However, the fact that they exhibited certain distinct responses indicated that they might also be regulated by specific pathways in addition to the common pathways. Ca2+ seemed to be involved in the signaling systems. In addition, Hog1p, one of the MAP kinases in yeast, appeared to be involved in the regulation of expression of HOR genes, although its function seemed to be insufficient for the overall regulation of expression of these genes.  相似文献   
32.
A psychrophilic alanine racemase from Bacillus psychrosaccharolyticus has a higher catalytic activity than a thermophilic alanine racemase from Bacillus stearothermophilus even at 60 °C in the presence of pyridoxal 5′-phosphate (PLP), although the thermostability of the former enzyme is lower than that of the latter one [FEMS Microbial. Lett. 192 (2000) 169]. In order to improve the thermostability of the psychrophilic enzyme, two hydrophilic amino acid residues (Glu150 and Arg151) at a surface loop surrounding the active site of the enzyme were substituted with the corresponding residues (Val and Ala) in the B. stearothermophilus alanine racemase. The mutant enzyme (ER150,151VA) showed a higher thermostability, and a markedly lower Km value for PLP, than the wild type one. In addition, the catalytic activities at low temperatures and kinetic parameters of the two enzymes indicated that the mutant enzyme was more psychrophilic than the wild type one. Thus, the psychrophilic alanine racemase was improved in both psychrophilicity and thermostability by the site-directed mutagenesis. The mutant enzyme may be useful for the production of stereospecifically deuterated NADH and various -amino acids.  相似文献   
33.
34.
Corynebacterium sp. KY 4339, when grown on n-paraffin (a mixture of C–12 to C–14 fractions) as the sole carbon source, produced three kinds of antibacterial compounds which were tentatively named Corynecins. These compounds were isolated by the extraction from the culture broth with ethyl acetate and by the chromatographies on silicic acid and alumina columns. Each component demonstrated some similarity to chloramphenicol on thin-layer chromatogram. Although their biological activities were not so remarkably as that of chloramphenicol, the patterns of antibacterial spectra against gram-positive and gram-negative bacteria resembled to it.

For the production of corynecins, n-paraffin was a preferable carbon source. By controlling the pH of the medium in the neutral range and keeping the aeration at a high level during the fermentation, approximately 3 g of corynecins per liter of the medium were produced after 72-hr incubation.  相似文献   
35.
The release of 6-keto-prostaglandin F (6KF)_and of thromboxane B2 (TXB2) from cells were investigated using mouse peritoneal exudate cells (PECs) and non-cultured peritoneal macrophages. They were prepared by adhesion to glass dishes and incubated for 1 hr at 37°C in 5% Co2 in air. Both the percentage of spreading macrophages and the release of 6KF and TXb2 increased in proportion to the incubation time. 6KF and TXB2 were released from the macrophages, not from the non-adherent cells. When PECs were incubated in silicon-coated glass dishes, the spreading of macrophages was hardly detected and lower amounts of 6KF and TXB2 were released from these cells compared with cells incubated in non-treated glass dishes. These findings suggest that adhesion with the correlated spreading of macrophages on glass dishes serve as a considerable physical factor for the release of 6KF and TXB2.  相似文献   
36.
Controlling the energetics and backbone order of semiconducting polymers is essential for the performance improvement of polymer‐based solar cells. The use of fluorine as the substituent for the backbone is known to effectively deepen the molecular orbital energy levels and coplanarize the backbone by noncovalent interactions with sulfur of the thiophene ring. In this work, novel semiconducting polymers are designed and synthesized based on difluoronaphthobisthiadiazole (FNTz) as a new family of naphthobisthiadiazole (NTz)–quaterthiophene copolymer systems, which are one of the highest performing polymers in solar cells. The effect of the fluorination position on the energetics and backbone order is systematically studied. It is found that the dependence of the solar cell fill factor on the active layer thickness is very sensitive to the fluorination position. It is thus further investigated and discussed how the structural features of the polymers influence the photovoltaic parameters as well as the diode characteristics and bimolecular recombination. Further, the polymer with fluorine on both the naphthobisthiadiazole and quaterthiophene moieties exhibits a quite high power conversion efficiency of 10.8% in solar cells in combination with a fullerene. It is believed that the results would offer new insights into the development of semiconducting polymers.  相似文献   
37.
Abstract

The reaction of glycosyl isothiocyanates (la, b, c, d, e) with 5,6-diamino-1-3-dimethyluracil gave the respective 1-glycosyl-3-(6-amino-1, 3-dimethyl-2, 4-dioxopyrimidine-5-yl) thioureas (2a, b, c, d, e) in excellent yields. Treatment of these thioureas with NBS afforded the respective 5,7-dioxopyrimido-[5,4-e]-as-triazine glycosides (4a, b, c, d, e) in good yields.  相似文献   
38.

Background

The marine epiphytic dinoflagellate genus Gambierdiscus produce toxins that cause ciguatera fish poisoning (CFP): one of the most significant seafood-borne illnesses associated with fish consumption worldwide. So far, occurrences of CFP incidents in Japan have been mainly reported in subtropical areas. A previous phylogeographic study of Japanese Gambierdiscus revealed the existence of two distinct phylotypes: Gambierdiscus sp. type 1 from subtropical and Gambierdiscus sp. type 2 from temperate areas. However, details of the genetic diversity and distribution for Japanese Gambierdiscus are still unclear, because a comprehensive investigation has not been conducted yet.

Methods/Principal Finding

A total of 248 strains were examined from samples mainly collected from western and southern coastal areas of Japan during 2006–2011. The SSU rDNA, the LSU rDNA D8–D10 and the ITS region were selected as genetic markers and phylogenetic analyses were conducted. The genetic diversity of Japanese Gambierdiscus was high since five species/phylotypes were detected: including two reported phylotypes (Gambierdiscus sp. type 1 and Gambierdiscus sp. type 2), two species of Gambierdiscus (G. australes and G. cf. yasumotoi) and a hitherto unreported phylotype Gambierdiscus sp. type 3. The distributions of type 3 and G. cf. yasumotoi were restricted to the temperate and the subtropical area, respectively. On the other hand, type 1, type 2 and G. australes occurred from the subtropical to the temperate area, with a tendency that type 1 and G. australes were dominant in the subtropical area, whereas type 2 was dominant in the temperate area. By using mouse bioassay, type 1, type 3 and G. australes exhibited mouse toxicities.

Conclusions/Significance

This study revealed a surprising diversity of Japanese Gambierdiscus and the distribution of five species/phylotypes displayed clear geographical patterns in Japanese coastal areas. The SSU rDNA and the LSU rDNA D8–D10 as genetic markers are recommended for further use.  相似文献   
39.
Stress granules (SGs) are cytoplasmic foci composed of stalled translation preinitiation complexes induced by environmental stress stimuli, including viral infection. Since viral propagation completely depends on the host translational machinery, many viruses have evolved to circumvent the induction of SGs or co-opt SG components. In this study, we found that expression of Japanese encephalitis virus (JEV) core protein inhibits SG formation. Caprin-1 was identified as a binding partner of the core protein by an affinity capture mass spectrometry analysis. Alanine scanning mutagenesis revealed that Lys97 and Arg98 in the α-helix of the JEV core protein play a crucial role in the interaction with Caprin-1. In cells infected with a mutant JEV in which Lys97 and Arg98 were replaced with alanines in the core protein, the inhibition of SG formation was abrogated, and viral propagation was impaired. Furthermore, the mutant JEV exhibited attenuated virulence in mice. These results suggest that the JEV core protein circumvents translational shutoff by inhibiting SG formation through an interaction with Caprin-1 and facilitates viral propagation in vitro and in vivo.  相似文献   
40.
Reorganization of the actin cytoskeleton is responsible for dynamic regulation of endothelial cell (EC) barrier function. Circumferential actin bundles (CAB) promote formation of linear adherens junctions (AJs) and tightening of EC junctions, whereas formation of radial stress fibers (RSF) connected to punctate AJs occurs during junction remodeling. The small GTPase Rap1 induces CAB formation to potentiate EC junctions; however, the mechanism underlying Rap1-induced CAB formation remains unknown. Here, we show that myotonic dystrophy kinase–related CDC42-binding kinase (MRCK)-mediated activation of non-muscle myosin II (NM-II) at cell–cell contacts is essential for Rap1-induced CAB formation. Our data suggest that Rap1 induces FGD5-dependent Cdc42 activation at cell–cell junctions to locally activate the NM-II through MRCK, thereby inducing CAB formation. We further reveal that Rap1 suppresses the NM-II activity stimulated by the Rho–ROCK pathway, leading to dissolution of RSF. These findings imply that Rap1 potentiates EC junctions by spatially controlling NM-II activity through activation of the Cdc42–MRCK pathway and suppression of the Rho–ROCK pathway.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号