首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   46篇
  免费   4篇
  50篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2016年   5篇
  2014年   7篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2010年   5篇
  2009年   3篇
  2008年   1篇
  2007年   6篇
  2006年   2篇
  2005年   1篇
  2004年   2篇
  2003年   4篇
  2001年   1篇
  1998年   1篇
  1985年   1篇
  1979年   1篇
  1977年   1篇
排序方式: 共有50条查询结果,搜索用时 15 毫秒
21.
Applied Microbiology and Biotechnology - Microbes being the initial form of life and ubiquitous in occurrence, they adapt to the environment quickly. The microbial metabolism undergoes alteration...  相似文献   
22.
23.
The leaf extract of Ocimum sanctum was used as a reducing agent for the synthesis of platinum nanoparticles from an aqueous chloroplatinic acid (H2PtCl6·6H2O). A greater conversion of platinum ions to nanoparticles was achieved by employing a tulsi leaf broth with a reaction temperature of 100 °C. Energy-dispersive absorption X-ray spectroscopy confirmed the platinum particles as major constituent in the reduction process. It is evident from scanning electron microscopy that the reduced platinum particles were found as aggregates with irregular shape. Fourier-transform infrared spectroscopy revealed that the compounds such as ascorbic acid, gallic acid, terpenoids, certain proteins and amino acids act as reducing agents for platinum ions reduction. X-ray diffraction spectroscopy suggested the associated forms of platinum with other molecules and the average particle size of platinum nanoparticle was 23 nm, calculated using Scherer equation. The reduced platinum showed similar hydrogen evolution potential and catalytic activity like pure platinum using linear scan voltammetry. This environmentally friendly method of biological platinum nanoparticles production increases the rates of synthesis faster which can potentially be used in water electrolysis applications.  相似文献   
24.
25.
Scientific data on the ability of the millet phenolic profile in prevention of protein and human erythrocyte peroxidation in terms of their cytoprotective properties is scarce. Catechin, ferulic acid and traces of vanillic acid and resveratrol were identified as bound polyphenols. It was determined that all millet varieties bound phenolics prevented DNA oxidation at a lower concentration of 50 µg. At a concentration of 25 µg kodo millet phenolics retained 80% of proteins visualized in SDS-PAGE. Moreover millet phenolics delayed time response for hemolysis and showed an 88.2% inhibition of erythrocyte lipid peroxidation. Though higher antioxidant property was estimated in kodo millet their bioavailability may be affected since much of the polyphenols occurred in bound form or as condensed tannins. Processed kodo millet with increased bioavailable phenolic content would thus be considered effective compared to other millet varieties for its cytoprotective properties.  相似文献   
26.
27.
Microbial degradation of the oil soluble corrosion inhibitor (OSCI) Baker NC 351 contributed to a decrease in inhibitor efficiency. Corrosion inhibition efficiency was studied by the rotating cage and flow loop methods. The nature of the biodegradation of the corrosion inhibitor was also analysed using Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy and gas chromatography-mass spectrometry. The influence of bacterial activity on the degradation of the corrosion inhibitor and its influence on corrosion of API 5LX were evaluated using a weight loss technique and impedance studies. Serratia marcescens ACE2 and Bacillus cereus ACE4 can degrade aromatic and aliphatic hydrocarbons present in the corrosion inhibitor. The present study also discusses the demerits of the oil soluble corrosion inhibitors used in petroleum product pipeline.  相似文献   
28.
Cancer cells are highly metabolically active and produce high levels of reactive oxygen species (ROS). Drug resistance in cancer cells is closely related to their redox status. The role of ROS and its impact on cancer cell survival seems far from elucidation. The mechanisms through which glioblastoma cells overcome aberrant ROS and oxidative stress in a milieu of hypermetabolic state is still elusive. We hypothesize that the formidable growth potential of glioma cells is through manipulation of tumor microenvironment for its survival and growth, which can be attributed to an astute redox regulation through a nexus between activation of N‐methyl‐d ‐aspartate receptor (NMDAR) and glutathione (GSH)‐based antioxidant prowess. Hence, we examined the NMDAR activation on intracellular ROS level, and cell viability on exposure to hydrogen peroxide (H2O2), and antioxidants in glutamate‐rich microenvironment of glioblastoma. The activation of NMDAR attenuated the intracellular ROS production in LN18 and U251MG glioma cells. MK‐801 significantly reversed this effect. On evaluation of GSH redox cycle in these cells, the level of reduced GSH and glutathione reductase (GR) activity were significantly increased. NMDAR significantly enhanced the cell viability in LN18 and U251MG glioblastoma cells, by attenuating exogenous H2O2‐induced oxidative stress, and significantly increased catalase activity, the key antioxidant that detoxifies H2O2. We hereby report an unexplored role of NMDAR activation induced protection of the rapidly multiplying glioblastoma cells against both endogenous ROS as well as exogenous oxidative challenges. We propose potentiation of reduced GSH, GR, and catalase in glioblastoma cells through NMDAR as a novel rationale of chemoresistance in glioblastoma.  相似文献   
29.
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号