首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   144篇
  免费   7篇
  2024年   1篇
  2023年   2篇
  2022年   7篇
  2021年   11篇
  2020年   6篇
  2019年   6篇
  2018年   3篇
  2017年   4篇
  2016年   11篇
  2015年   10篇
  2014年   5篇
  2013年   8篇
  2012年   11篇
  2011年   5篇
  2010年   12篇
  2009年   4篇
  2008年   5篇
  2007年   5篇
  2006年   8篇
  2005年   3篇
  2004年   12篇
  2003年   2篇
  2002年   4篇
  1999年   1篇
  1991年   1篇
  1988年   2篇
  1978年   2篇
排序方式: 共有151条查询结果,搜索用时 62 毫秒
31.
A large-scale mutagenesis screen was performed in Medaka to identify genes acting in diverse developmental processes. Mutations were identified in homozygous F3 progeny derived from ENU-treated founder males. In addition to the morphological inspection of live embryos, other approaches were used to detect abnormalities in organogenesis and in specific cellular processes, including germ cell migration, nerve tract formation, sensory organ differentiation and DNA repair. Among 2031 embryonic lethal mutations identified, 312 causing defects in organogenesis were selected for further analyses. From these, 126 mutations were characterized genetically and assigned to 105 genes. The similarity of the development of Medaka and zebrafish facilitated the comparison of mutant phenotypes, which indicated that many mutations in Medaka cause unique phenotypes so far unrecorded in zebrafish. Even when mutations of the two fish species cause a similar phenotype such as one-eyed-pinhead or parachute, more genes were found in Medaka than in zebrafish that produced the same phenotype when mutated. These observations suggest that many Medaka mutants represent new genes and, therefore, are important complements to the collection of zebrafish mutants that have proven so valuable for exploring genomic function in development.  相似文献   
32.
In a large scale mutagenesis screen of Medaka we identified 60 recessive zygotic mutations that affect retina development. Based on the onset and type of phenotypic abnormalities, the mutants were grouped into five categories: the first includes 11 mutants that are affected in neural plate and optic vesicle formation. The second group comprises 15 mutants that are impaired in optic vesicle growth. The third group includes 18 mutants that are affected in optic cup development. The fourth group contains 13 mutants with defects in retinal differentiation. 12 of these have smaller eyes, whereas one mutation results in enlarged eyes. The fifth group consists of three mutants with defects in retinal pigmentation. The collection of mutants will be used to address the molecular genetic mechanisms underlying vertebrate eye formation.  相似文献   
33.
The forebrain, consisting of the telencephalon and diencephalon, is essential for processing sensory information. To genetically dissect formation of the forebrain in vertebrates, we carried out a systematic screen for mutations affecting morphogenesis of the forebrain in Medaka. Thirty-three mutations defining 25 genes affecting the morphological development of the forebrain were grouped into two classes. Class 1 mutants commonly showing a decrease in forebrain size, were further divided into subclasses 1A to 1D. Class 1A mutation (1 gene) caused an early defect evidenced by the lack of bf1 expression, Class 1B mutations (6 genes) patterning defects revealed by the aberrant expression of regional marker genes, Class 1C mutation (1 gene) a defect in a later stage, and Class 1D (3 genes) a midline defect analogous to the zebrafish one-eyed pinhead mutation. Class 2 mutations caused morphological abnormalities in the forebrain without considerably affecting its size, Class 2A mutations (6 genes) caused abnormalities in the development of the ventricle, Class 2B mutations (2 genes) severely affected the anterior commissure, and Class 2C (6 genes) mutations resulted in a unique forebrain morphology. Many of these mutants showed the compromised sonic hedgehog expression in the zona-limitans-intrathalamica (zli), arguing for the importance of this structure as a secondary signaling center. These mutants should provide important clues to the elucidation of the molecular mechanisms underlying forebrain development, and shed new light on phylogenically conserved and divergent functions in the developmental process.  相似文献   
34.
Polycystic ovary syndrome (PCOS) is a complex but frequently occurring endocrine abnormality. PCOS has become one of the leading causes of oligo-ovulatory infertility among premenopausal women. The definition of PCOS remains unclear because of the heterogeneity of this abnormality, but it is associated with insulin resistance, hyperandrogenism, obesity and dyslipidaemia. The main purpose of this study was to identify possible candidate genes involved in PCOS. Several genomic approaches, including linkage analysis and microarray analysis, have been used to look for candidate PCOS genes. To obtain a clearer view of the mechanism of PCOS, we have compiled data from microarray analyses. An extensive literature search identified seven published microarray analyses that utilized PCOS samples. These were published between the year of 2003 and 2007 and included analyses of ovary tissues as well as whole ovaries and theca cells. Although somewhat different methods were used, all the studies employed cDNA microarrays to compare the gene expression patterns of PCOS patients with those of healthy controls. These analyses identified more than a thousand genes whose expression was altered in PCOS patients. Most of the genes were found to be involved in gene and protein expression, cell signaling and metabolism. We have classified all of the 1081 identified genes as coding for either known or unknown proteins. Cytoscape 2.6.1 was used to build a network of protein and then to analyze it. This protein network consists of 504 protein nodes and 1408 interactions among those proteins. One hypothetical protein in the PCOS network was postulated to be involved in the cell cycle. BiNGO was used to identify the three main ontologies in the protein network: molecular functions, biological processes and cellular components. This gene ontology analysis identified a number of ontologies and genes likely to be involved in the complex mechanism of PCOS. These include the insulin receptor signaling pathway, steroid biosynthesis, and the regulation of gonadotropin secretion among others.  相似文献   
35.

Background

Neonatal teeth erupt during the neonatal period and natal teeth are the presence of teeth since birth. While rare, natal teeth and neonatal teeth can have a significant impact on breastfeeding. Neonatal teeth are less common, and although its exact etiology is still unknown, it can cause difficulties in breastfeeding to the mother and may eventually lead to discontinuation of breastfeeding. Other associated possible complications include tooth aspiration and sublingual ulceration. This paper was aimed to discuss the clinical features, complications, and management of neonatal tooth, in addition to its impact on breastfeeding and role in sublingual ulcer formation.

Case presentation

We present a baby girl who had a neonatal tooth with sublingual ulceration (Riga-Fede disease), which resulted in a difficulty to breastfeed for the baby and nipple pain to the mother. Following the extraction of the baby’s tooth, she immediately continued breastfeeding, and her tongue ulcer healed well.

Conclusion

Extraction of the neonatal tooth promoted rapid healing of oral ulcers and the reestablishment of breastfeeding.
  相似文献   
36.
37.
There are serious concerns about the commercialization of healthcare and adoption of the business approach in medicine. As market dynamics endanger established professional values, healthcare workers face more complicated ethical dilemmas in their daily practice. The aim of this study was to investigate the willingness of medical students to accept the assertions of commercialized healthcare and the factors affecting their level of agreement, factors which could influence their moral stance when market demands conflict with professional values. A cross-sectional study was conducted in three medical schools in Turkey. The study population consisted of first-, third-, and sixth-year students, and 1,781 students participated in total. Students were asked to state if they agreed with the assertions of commercialized healthcare. Of all students, 87.2 per cent agreed with at least one of the assertions, and one-fifth (20.8 per cent) of them agreed with more than half of the assertions. First-year students significantly agreed more with some assertions than third- and sixth-year students. Being female, having mid-level family income, choosing medicine due to idealistic reasons, and being in the third or sixth years of medical study increased the probability of disagreement. Also, studying in a medical school that included integrated lectures on health policies, rights related to health, and health inequities, along with early field visits, increased the probability of disagreement. This study suggests that agreement with the assertions of commercialized healthcare might be prevalent among students at a considerable level. We argue that this level of agreement is not compatible with best practice in professional ethics and indicates the need for an educational intervention in order to have physicians who give priority to patients’ best interests in the face of market demands.  相似文献   
38.
Salinity stress is a major threat to global food production and its intensity is continuously increasing because of anthropogenic activities. Wheat is a staple food and a source of carbohydrates and calories for the majority of people across the globe. However, wheat productivity is adversely affected by salt stress, which is associated with a reduction in germination, growth, altered reproductive behavior and enzymatic activity, disrupted photosynthesis, hormonal imbalance, oxidative stress, and yield reductions. Thus, a better understanding of wheat (plant) behavior to salinity stress has essential implications to devise counter and alleviation measures to cope with salt stress. Different approaches including the selection of suitable cultivars, conventional breeding, and molecular techniques can be used for facing salt stress tolerance. However, these techniques are tedious, costly, and labor-intensive. Management practices are still helpful to improve the wheat performance under salinity stress. Use of arbuscular mycorrhizal fungi, plant growth-promoting rhizobacteria, and exogenous application of phytohormones, seed priming, and nutrient management are important tools to improve wheat performance under salinity stress. In this paper, we discussed the effect of salinity stress on the wheat crop, possible mechanisms to deal with salinity stress, and management options to improve wheat performance under salinity conditions.  相似文献   
39.
Iron is an indispensable element for vital activities in almost all living organisms. It is also a cofactor for many proteins, enzymes, and other essential complex biochemical processes. Therefore, iron trafficking is firmly regulated by Hepcidin (Hamp), which is regarded as the marker for iron accumulation. The disruption of iron homeostasis leads to oxidative stress that causes various human diseases, but this mechanism is still unclear. The aim of this study is to provide a better in vivo and in vitro understanding of how long‐term iron overload affects the gene expression and activities of some antioxidant enzymes, such as glucose 6‐phosphate dehydrogenase (G6PD), 6‐phosphogluconate dehydrogenase (6PGD), and glutathione reductase (GR) in the spleen. The findings of this study show that iron overload reduces the gene expression of G6pd, 6pgd, and Gr, but its actual effect was on the protein level.  相似文献   
40.
The present study investigated the levels of trace elements (Zn, Cu, Fe, Pb, and Cd), major elements (Ca and K), phytohormones (trans-Zeatin [t-Z] and gibberellic acid [GA]), and sugars (sucrose and glucose) following inoculation with Pseudomonas syringae pv. tomato strain. The results of the trace elements analysis showed that Fe (in the first, fourth, eighth, and tenth study days), Cd (in the fourth, eighth, and tenth study days), Cu (in the fourth and eighth study days), and Zn (in the eighth and tenth study days) increased in bacterium-infected tomato plants, compared to healthy plants. The levels of Pb, Ca, and K did not meaningfully determine a change after inoculation with pathogen. In this vein, the increase accumulation rates of Cu, Zn, and Fe in the injured plants can be an important indicator for the plant defense processes towards pathogen attack. Furthermore, in the first, fourth, eighth, and tenth study days, the glucose and sucrose contents crucially decreased in bacterium-infected plants compared to the control groups. The lowest level of sucrose in bacterium-infected plants was observed on the first day. The findings displayed that, when endogenous t-Z levels did not change after inoculation with virulent bacterium strain, there was a reduction in the first, fourth, eighth, and tenth days in the level of GA when compared with the control group levels. Therefore, there may be a link between lower GA level and enhancement in the expression of defense-related genes. The results of this study showed that there are complex relationships among levels of sugar, trace element, and endogenous phytohormone in the regulation of defense mechanisms against bacterial pathogen attacks.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号