首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1169篇
  免费   84篇
  2022年   6篇
  2021年   15篇
  2020年   10篇
  2019年   12篇
  2018年   11篇
  2017年   8篇
  2016年   19篇
  2015年   36篇
  2014年   38篇
  2013年   78篇
  2012年   72篇
  2011年   54篇
  2010年   49篇
  2009年   41篇
  2008年   64篇
  2007年   55篇
  2006年   76篇
  2005年   65篇
  2004年   57篇
  2003年   62篇
  2002年   45篇
  2001年   15篇
  2000年   35篇
  1999年   28篇
  1998年   17篇
  1997年   15篇
  1996年   11篇
  1995年   15篇
  1994年   9篇
  1993年   9篇
  1992年   18篇
  1991年   14篇
  1990年   10篇
  1989年   18篇
  1988年   13篇
  1987年   7篇
  1986年   13篇
  1985年   12篇
  1984年   14篇
  1983年   9篇
  1982年   11篇
  1980年   11篇
  1979年   10篇
  1978年   8篇
  1976年   7篇
  1975年   8篇
  1974年   8篇
  1973年   7篇
  1970年   4篇
  1967年   5篇
排序方式: 共有1253条查询结果,搜索用时 15 毫秒
91.
Enzymes catalyzing the conversion of organohalogen compounds are useful in the chemical industry and environmental technology. Here we report the occurrence of a new reduced flavin adenine dinucleotide (FAD) (FADH2)-dependent enzyme that catalyzes the removal of a halogen atom from an unsaturated aliphatic organohalogen compound by the addition of a water molecule to the substrate. A soil bacterium, Pseudomonas sp. strain YL, inducibly produced a protein named Caa67YL when the cells were grown on 2-chloroacrylate (2-CAA). The caa67YL gene encoded a protein of 547 amino acid residues (Mr of 59,301), which shared weak but significant sequence similarity with various flavoenzymes and contained a nucleotide-binding motif. We found that 2-CAA is converted into pyruvate when the reaction was carried out with purified Caa67YL in the presence of FAD and a reducing agent [NAD(P)H or sodium dithionite] under anaerobic conditions. The reducing agent was not stoichiometrically consumed during this reaction, suggesting that FADH2 is conserved by regeneration in the catalytic cycle. When the reaction was carried out in the presence of H218O, [18O]pyruvate was produced. These results indicate that Caa67YL catalyzes the hydration of 2-CAA to form 2-chloro-2-hydroxypropionate, which is chemically unstable and probably spontaneously dechlorinated to form pyruvate. 2-Bromoacrylate, but not other 2-CAA analogs such as acrylate and methacrylate, served as the substrate of Caa67YL. Thus, we named this new enzyme 2-haloacrylate hydratase. The enzyme is very unusual in that it requires the reduced form of FAD for hydration, which involves no net change in the redox state of the coenzyme or substrate.Dehalogenases catalyze the removal of halogen atoms from organohalogen compounds. These enzymes have been attracting a great deal of attention partly because of their possible applications to the chemical industry and environmental technology. Several dehalogenases have been discovered and characterized (6, 11, 14, 17, 22). Some of them act on unsaturated aliphatic organohalogen compounds in which a halogen atom is bound to an sp2-hybridized carbon atom. Examples include various corrinoid/iron-sulfur cluster-containing reductive dehalogenases (1, 7), cis- and trans-3-chloroacrylic acid dehalogenases (4, 19), and LinF (maleylacetate reductase), which acts on 2-chloromaleylacetate (5).In order to gain more insight into the enzymatic dehalogenation of unsaturated aliphatic organohalogen compounds, we searched for microorganisms that dissimilate 2-chloroacrylate (2-CAA) as a sole source of carbon and energy (8). 2-CAA is a bacterial metabolite of 2-chloroallyl alcohol, an intermediate or by-product in the industrial synthesis of herbicides (26). Rats treated orally with the herbicides sulfallate, diallate, and triallate excrete urinary 2-CAA (16). Various halogenated acrylic acids are produced by a red alga (27). We obtained three 2-CAA-utilizing bacteria as a result of screening (8). For one of these bacteria, Burkholderia sp. strain WS, we previously discovered a new NADPH-dependent enzyme, 2-haloacrylate reductase (12, 13). Although this enzyme does not directly remove a halogen atom from the substrate, it is supposed to participate in the metabolism of 2-CAA by catalyzing the conversion of 2-CAA into l-2-chloropropionate, which is subsequently dehalogenated by l-2-haloacid dehalogenase.Another bacterium that we obtained, Pseudomonas sp. strain YL, also dissimilates 2-CAA. However, the metabolic fate of 2-CAA in this bacterium remains unclear. In the present study, we analyzed proteins from 2-CAA- and lactate-grown cells of Pseudomonas sp. YL by two-dimensional polyacrylamide gel electrophoresis (PAGE) and identified a 2-CAA-inducible protein. We found that the protein catalyzes the dehalogenation of 2-CAA by the addition of a water molecule to the substrate, representing a new family of dehalogenases that act on unsaturated aliphatic organohalogen compounds. Remarkably, the enzyme requires reduced flavin adenine dinucleotide (FAD) (FADH2) for its activity, although the reaction does not involve a net change in the redox state of the coenzyme or substrate. Here we describe the occurrence and characteristics of this unusual flavoenzyme.  相似文献   
92.
We examined whether and how pretreatment with carbon monoxide (CO) prevents apoptosis of cardioblastic H9c2 cells in ischemia-reperfusion. Reperfusion (6 h) following brief ischemia (10 min) induced cytochrome c release, activation of caspase-9 and caspase-3, and apoptotic nuclear condensation. Brief CO pretreatment (10 min) or a caspase-9 inhibitor (Z-LEHD-FMK) attenuated these apoptotic changes. Ischemia-reperfusion increased phosphorylation of Akt at Ser472/473/474, and this was enhanced by CO pretreatment. A specific Akt inhibitor (API-2) blunted the anti-apoptotic effects of CO in reperfusion. In normoxic cells, CO enhanced generation, which was inhibited by a mitochondrial complex III inhibitor (antimycin A) but not by a NADH oxidase inhibitor (apocynin). The CO-enhanced Akt phosphorylation was suppressed by an scavenger (Tiron), catalase or a superoxide dismutase (SOD) inhibitor (DETC). These results suggest that CO pretreatment induces mitochondrial generation of , which is then converted by SOD to H2O2, and subsequent Akt activation by H2O2 attenuates apoptosis in ischemia-reperfusion.  相似文献   
93.
We investigated the effect of glucose on hypoxic death of rat cardiomyocyte-derived H9c2 cells and found that there is an optimal glucose concentration for protection against hypoxic cell death. Hypoxic cell death in the absence of glucose is accompanied by rapid ATP depletion, release of apoptosis-inducing factor from mitochondria, and nuclear chromatin condensation, all of which are inhibited by glucose in a dose-dependent manner. In contrast, excessive glucose also induces hypoxic cell death that is not accompanied by these events, suggesting a change in the mode of cell death between hypoxic cells with and without glucose supplementation.  相似文献   
94.
In early-organogenesis-stage mouse embryos, the posteroventral foregut endoderm adjacent to the heart tube gives rise to liver, ventral pancreas and gallbladder. Hepatic and pancreatic primordia become specified in the posterior segment of the ventral foregut endoderm at early somite stages. The mechanisms for demarcating gallbladder and bile duct primordium, however, are poorly understood. Here, we demonstrate that the gallbladder and bile duct progenitors are specified in the paired lateral endoderm domains outside the heart field at almost the same timing as hepatic and pancreatic induction. In the anterior definitive endoderm, Sox17 reactivation occurs in a certain population within the most lateral domains posterolateral to the anterior intestinal portal (AIP) lip on both the left and right sides. During foregut formation, the paired Sox17-positive domains expand ventromedially to merge in the midline of the AIP lip and become localized between the liver and pancreatic primordia. In Sox17-null embryos, these lateral domains are missing, resulting in a complete loss of the gallbladder/bile-duct structure. Chimera analyses revealed that Sox17-null endoderm cells in the posteroventral foregut do not display any gallbladder/bile-duct molecular characters. Our findings show that Sox17 functions cell-autonomously to specify gallbladder/bile-duct in the mouse embryo.  相似文献   
95.
Three plant proteinase inhibitors BbKI (kallikrein inhibitor) and BbCI (cruzipain inhibitor) from Bauhinia bauhinioides, and a BrTI (trypsin inhibitor) from B. rufa, were examined for other effects in Callosobruchus maculatus development; of these only BrTI affected bruchid emergence. BrTI and BbKI share 81% identities in their primary sequences and the major differences between them are the regions comprising the RGD and RGE motifs in BrTI. These sequences were shown to be essential for BrTI insecticidal activity, since a modified BbKI [that is a recombinant form (BbKIm) with some amino acid residues replaced by those found in BrTI sequence] also strongly inhibited insect development. By using synthetic peptides related to the BrTI sequence, YLEAPVARGDGGLA-NH2 (RGE) and IVYYPDRGETGL-NH2 (RGE), it was found that the peptide with an RGE sequence was able to block normal development of C. maculatus larvae (ED50 0.16% and LD50 0.09%), this being even more effective than the native protein.  相似文献   
96.
97.
Gross and microscopic features closely resembling those found in Menetrier's disease in man are described in a 20-month-old rhesus monkey. The gastric lining was characterized by greatly enlarged rugae caused by mucosal hypertrophy and hyperplasia along with outfolding of the muscularis mucosa and the submucosa. The mucosa and submucosa were infiltrated with inflammatory cells, mainly lymphocytes and plasma cells.  相似文献   
98.
Necropsy of a 15-month-old male orangutan (Pongo pygmaeus) showed multiple nodular elevations of the mucosa of the colon, petechial hemorrhages in both lungs, and mucosal ulcerations in the cecum, appendix, and proximal colon. Light microscopy revealed filariform larvae of Strongyloides in the lung, colon, and mesenteric lymph nodes. Rhabditiform larvae were also observed in sections of colon.  相似文献   
99.
X rays are well known to cause genetic damage and to induce many types of carcinomas in humans. The Apc(min/+) mouse, an animal model for human familial adenomatous polyposis (FAP), contains a truncating mutation in the APC gene and spontaneously develops intestinal adenomas. To elucidate the role of X rays in the development of intestinal tumors, we examined the promotion of carcinogenesis in X-irradiated Apc(min/+) mice. Forty out of 77 (52%) X-irradiated Apc(min/+) mice developed adenocarcinomas that invaded the proprial muscle layer of the small intestine; 24 of 44 (55%) were in males, and 16 of 33 (49%) were in females. In contrast, invasive carcinomas were detected in the small intestines of only 13 of 64 (20%) nonirradiated Apc(min/+) mice; nine of 32 (28%) were in males and four of 32 (13%) were in females. These differences between X-irradiated and nonirradiated Apc(min/+) mice in the occurrence of invasive intestinal carcinomas were statistically significant (P < 0.05 for males, P < 0.005 for females). In wild-type mice, invasive carcinomas were not detected in either X-irradiated or nonirradiated mice. Apc(min/+) mice had many polyps in the large intestine with or without X irradiation; there was no difference in the number of polyps between the two groups. Also, invasive carcinomas were not detected in the large intestine with or without irradiation. The occurrence of mammary tumors, which was observed in Apc(min/+) mice, was found to be increased in irradiated Apc(min/+) mice (P < 0.01). Apc(min/+) mice had many polyps in the small and large intestines with or without X irradiation. X-irradiated Apc(min/+) mice had highly invasive carcinomas in the small intestine with multiplicities associated with invasiveness. Our results suggest that X radiation may promote the invasive activity of intestinal tumors in Apc(min/+) mice.  相似文献   
100.
We previously reported the protection from myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE) by the adoptive transfer of genetically modified embryonic stem cell-derived dendritic cells (ES-DC) presenting MOG peptide in the context of MHC class II molecules and simultaneously expressing TRAIL (ES-DC-TRAIL/MOG). In the present study, we found the severity of EAE induced by another myelin autoantigen, myelin basic protein, was also decreased after treatment with ES-DC-TRAIL/MOG. This preventive effect diminished, if the function of CD4(+)CD25(+) regulatory T cells (Treg) was abrogated by the injection of anti-CD25 mAb into mice before treatment with ES-DC-TRAIL/MOG. The adoptive transfer of CD4(+)CD25(+) T cells from ES-DC-TRAIL/MOG-treated mice protected the recipient mice from MOG- or myelin basic protein-induced EAE. The number of Foxp3(+) cells increased in the spinal cords of mice treated with ES-DC-TRAIL/MOG. In vitro experiments showed that TRAIL expressed in genetically modified ES-DC and also in LPS-stimulated splenic macrophages had a capacity to augment the proliferation of CD4(+)CD25(+) T cells. These results suggest that the prevention of EAE by treatment with ES-DC-TRAIL/MOG is mediated, at least in part, by MOG-reactive CD4(+)CD25(+) Treg propagated by ES-DC-TRAIL/MOG. For the treatment of organ-specific autoimmune diseases, induction of Treg reactive to the organ-specific autoantigens by the transfer of DC-presenting Ags and simultaneously overexpressing TRAIL therefore appears to be a promising strategy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号