首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   405篇
  免费   22篇
  427篇
  2023年   3篇
  2022年   14篇
  2021年   21篇
  2020年   10篇
  2019年   14篇
  2018年   16篇
  2017年   13篇
  2016年   15篇
  2015年   20篇
  2014年   34篇
  2013年   40篇
  2012年   45篇
  2011年   37篇
  2010年   19篇
  2009年   14篇
  2008年   16篇
  2007年   14篇
  2006年   11篇
  2005年   12篇
  2004年   12篇
  2003年   10篇
  2002年   12篇
  2001年   3篇
  2000年   3篇
  1995年   1篇
  1994年   2篇
  1992年   2篇
  1991年   2篇
  1990年   3篇
  1989年   1篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1976年   1篇
  1974年   1篇
  1970年   1篇
  1964年   1篇
排序方式: 共有427条查询结果,搜索用时 0 毫秒
71.
北极的春季:迁徙鸟类抵达的生物学   总被引:5,自引:0,他引:5  
一旦鸟类抵达北极区,迁徙鸟类必须调整其生理和行为以适应不可预知的雪盖、天气、食物资源和天敌胁迫。换言之,他们必须抵抗环境干扰(压力)以便尽早迁徙到苔原上的巢区并建立领域。然后,一旦外界环境有利时,它们就立即开始繁殖。这些鸟类的繁殖有一部分是利用低雪盖区域的微生境以及雪融较快的苔原斑块(特别是在柳树Salix sp.附近)。在北极地区,地面温度在日照若干小时后急剧上升,同时无脊椎动物开始活动。风速在地面柳枝和生草丛苔原10cm下几乎减弱为零。这些条件结合在一起提供了理想的避难所,对于早春迁徙到此的雀形目鸟类尤其如此。然而,如果环境调节变得更为恶劣,这些鸟类会离开。因为与南方越冬地相比,春季北极区条件具有潜在的严酷性,所以鸟类对于应激时的肾上腺皮质反应有所调整。雄鸟到达北极地区时对于剧烈应激刺激下的肾上腺酮的分泌有所提高,并且伴随着对于负反馈敏感性的下降和肾上腺皮质层细胞对于促肾上腺皮质激素作用反应的变化。同时,肾上腺酮结合蛋白(CBG)的水平也有所提高,以至于肾上腺酮的作用在恶劣的环境条件下得到缓冲。基因组受体水平的调节,尤其是在脑和肝脏中糖皮质类固醇类似受体与肾上腺酮的低亲合性,以及肾上腺酮的非基因组水平的作用,可能是很重要的。换言之,与抵达生物学有关的激素一行为系统是高度可变的[动物学报50(6):948-960,2004]。  相似文献   
72.

Background

Acute respiratory distress syndrome (ARDS) can result in a life-threatening form of respiratory failure, and established, effective pharmacotherapies are therefore urgently required. Quercetin is one of the most common flavonoids found in fruits and vegetables, and has potent anti-inflammatory and anti-oxidant activities. Quercetin has been demonstrated to exhibit cytoprotective effects through the induction of heme oxygenase (HO)-1. Here, we investigated whether the intratracheal administration of quercetin could suppress lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice as well as the involvement of HO-1 in quercetin’s suppressive effects.

Methods

Mouse model of ALI were established by challenging intratracheally LPS. The wet lung-to-body weight ratio, matrix metalloproteinase (MMP)-9 activities, and pro-inflammatory cytokine productions, including tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 in bronchoalveolar lavage fluid (BALF) were examined in ALI mice with or without quercetin pretreatment. We also examined the effects of quercetin on LPS stimulation in the mouse alveolar macrophage cell line, AMJ2-C11 cells.

Results

Intratracheal administration of quercetin decreased the wet lung-to-body weight ratio. Moreover, quercetin decreased MMP-9 activity and the production of pro-inflammatory cytokines in BALF cells activated by LPS in advance. We determined the expression of quercetin-induced HO-1 in mouse lung, e.g., alveolar macrophages (AMs), alveolar and bronchial epithelial cells. When AMJ2-C11 cells were cultured with quercetin, a marked suppression of LPS-induced pro-inflammatory cytokine production was observed. The cytoprotective effects were attenuated by the addition of the HO-1 inhibitor SnPP. These results indicated that quercetin suppressed LPS-induced lung inflammation, and that an HO-1-dependent pathway mediated these cytoprotective effects.

Conclusions

Our findings indicated that quercetin suppressed LPS-induced lung inflammation, and that an HO-1-dependent pathway mediated these cytoprotective effects. Intratracheal administration of quercetin will lead to new supportive strategies for cytoprotection in these serious lung conditions.  相似文献   
73.
74.

Oil-rich algae have promising potential for a next-generation biofuel feedstock. Pseudochoricystis ellipsoidea MBIC 11204, a novel unicellular green algal strain, accumulates a large amount of oil (lipids) in nitrogen-deficient (–N) conditions. Although the oil bodies are easily visualized by lipophilic staining in the cells, little is known about how oil bodies are metabolically synthesized. Clarifying the metabolic profiles in –N conditions is important to understand the physiological mechanisms of lipid accumulations and will be useful to optimize culture conditions efficiently produce industrial oil. Metabolome and lipidome profiles were obtained, respectively, using capillary electrophoresis- and liquid chromatography-mass spectrometry from P. ellipsoidea in both nitrogen-rich (+N; rapid growth) and –N conditions. Relative quantities of more than 300 metabolites were systematically compared between these two conditions. Amino acids in nitrogen assimilation and N-transporting metabolisms were decreased to 1/20 the amount, or less, in –N conditions. In lipid metabolism, the quantities of neutral lipids increased greatly in –N conditions; however, quantities of nearly all the other lipids either decreased or only changed slightly. The morphological changes in +N and –N conditions were also provided by microscopy, and we discuss their relationship to the metabolic changes. This is the first approach to understand the novel algal strain’s metabolism using a combination of wide-scale metabolome analysis and morphological analysis.

  相似文献   
75.
76.
77.
78.

Background and aims

Phosphatase and tensin homolog (PTEN) is a phosphoinositide phosphatase that regulates crucial cellular functions, including insulin signaling, lipid and glucose metabolism, as well as survival and apoptosis. Silymarin is the active ingredient in milk thistle and exerts numerous effects through the activation of PTEN. However, the effect of silymarin on the development of insulin resistance remains unknown.

Methods

Wistar rats fed fructose-rich chow or normal chow were administered oral silymarin to identify the development of insulin resistance using the homeostasis model assessment of insulin resistance and hyperinsulinemic- euglycemic clamping. Changes in PTEN expression in skeletal muscle and liver were compared using western blotting analysis. Further investigation was performed in L6 cells to check the expression of PTEN and insulin-related signals. PTEN deletion in L6 cells was achieved by small interfering ribonucleic acid transfection.

Results

Oral administration of silymarin at a dose of 200 mg/kg once daily induced insulin resistance in normal rats and enhanced insulin resistance in fructose-rich chow-fed rats. An increase of PTEN expression was observed in the skeletal muscle and liver of rats with insulin resistance. A decrease in the phosphorylation of Akt in L6 myotube cells, which was maintained in a high-glucose condition, was also observed. Treatment with silymarin aggravated high-glucose-induced insulin resistance. Deletion of PTEN in L6 cells reversed silymarin-induced impaired insulin signaling and glucose uptake.

Conclusions

Silymarin has the ability to disrupt insulin signaling through increased PTEN expression. Therefore, silymarin should be used carefully in type-2 diabetic patients.  相似文献   
79.
We recently identified a novel cDNA encoding a small secretory protein of 80 amino acid residues, termed neurosecretory protein GL (NPGL), from the chicken hypothalamus. Homologs of NPGL have been reported to be present in mammals, such as human and rat. NPGL is amidated at its C‐terminus, contains an intramolecular disulfide bond, and is hydrophobic in nature. In this study, we have optimized the synthesis of the entire 80‐amino acid peptide sequence of rat NPGL by microwave‐assisted solid‐phase peptide synthesis. NPGL was obtained with a 10% yield when the coupling reactions were performed using 1‐[Bis(dimethylamino)methylene]‐1H‐1,2,3‐triazolo[4,5‐b]pyridinium‐3‐oxid hexafluorophosphate (HATU) at 50 °C for 5 min, and Fmoc deprotections were performed using 40% piperidine containing 0.1 M HOBt. Furthermore, the disulfide bond of NPGL was formed with 20% yield with the use of glutathione‐containing redox buffer and 50% acetonitrile. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   
80.
Nitric Oxide Reversibly Suppresses Xanthine Oxidase Activity   总被引:10,自引:0,他引:10  
The effects of nitric oxide (NO) on xanthine oxidase (XOD) activity and the site(s) of the redox center(s) affected were investigated. XOD activity was determined by superoxide (O2-) generation and uric acid formation. NO reversibly and dose-dependently suppressed XOD activity in both determination methods. The suppression interval also disclosed a dose-dependent prolongation. The suppression occurred irrespective of the presence or absence of xanthine; indicating that the reaction product of NO and O2-, peroxynitrite, is not responsible for the suppression. Application of synthesized peroxynitrite did not affect XOD activity up to 2 μM. Methylene blue, which is an electron acceptor from Fe/S center, prevented the NO-induced inactivation. The results indicate that NO suppresses XOD activity through reversible alteration of the flavin prosthetic site.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号