首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   405篇
  免费   22篇
  427篇
  2023年   3篇
  2022年   14篇
  2021年   21篇
  2020年   10篇
  2019年   14篇
  2018年   16篇
  2017年   13篇
  2016年   15篇
  2015年   20篇
  2014年   34篇
  2013年   40篇
  2012年   45篇
  2011年   37篇
  2010年   19篇
  2009年   14篇
  2008年   16篇
  2007年   14篇
  2006年   11篇
  2005年   12篇
  2004年   12篇
  2003年   10篇
  2002年   12篇
  2001年   3篇
  2000年   3篇
  1995年   1篇
  1994年   2篇
  1992年   2篇
  1991年   2篇
  1990年   3篇
  1989年   1篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1976年   1篇
  1974年   1篇
  1970年   1篇
  1964年   1篇
排序方式: 共有427条查询结果,搜索用时 15 毫秒
61.
The methionine salvage pathway (MSP) plays a crucial role in recycling a sulphahydryl derivative of the nucleoside. Recently, the genes and reactions in MSP from Bacillus subtilis have been identified, where 5-methylthioribose 1-phosphate isomerase (M1Pi) catalyzes a conversion of 5-methylthioribose 1-phosphate (MTR-1-P) to 5-methylthioribulose 1-phosphate (MTRu-1-P). Herein, we report the crystal structures of B. subtilis M1Pi (Bs-M1Pi) in complex with its product MTRu-1-P, and a sulfate at 2.4 and 2.7 A resolution, respectively. The electron density clearly shows the presence of each compound in the active site. The structural comparison with other homologous proteins explains how the substrate uptake of Bs-M1Pi may be induced by an open/closed transition of the active site. The highly conserved residues at the active site, namely, Cys160 and Asp240 are most likely to be involved in catalysis. The structural analysis sheds light on its catalytic mechanism of M1Pi.  相似文献   
62.
Musclin is a novel skeletal muscle-derived secretory factor found in the signal sequence trap of mouse skeletal muscle cDNAs. Musclin possesses a region homologous to the natriuretic peptide family. Thus, musclin is found to bind with the natriuretic peptide clearance receptors. However, the role of musclin in vascular regulation remains unclear. In this study, we aim to investigate the direct effect of musclin on vascular tone and to analyze its role in hypertension using the spontaneously hypertensive rats (SHR). In aortic strips isolated from SHR, musclin induced contractions in a dose-dependent manner. We found that the musclin-induced vasoconstriction was more marked in SHR than in normal rats (WKY). Moreover, this contraction was reduced by blockade of natriuretic peptide receptor C using the ab14355 antibody. Therefore, mediation of the natriuretic peptide receptor in musclin-induced vasoconstriction can be considered. In addition, similar to the natriuretic peptide receptor, expression of the musclin gene in blood vessels was higher in SHR than in WKY. Injection of musclin markedly increased the blood pressure in rats that can be inhibited by anti-musclin antibodies. Musclin-induced vasoconstriction was more pronounced in SHR than in WKY as in its expression. Taken together, these results suggest that musclin is involved in blood pressure regulation. The higher expression of musclin in hypertension indicates that musclin could be used as a new target for the treatment of hypertension in the future.  相似文献   
63.
Tacrolimus is widely used as an immunosuppressant in liver transplantation, and tacrolimus-induced acute kidney injury (AKI) is a serious complication of liver transplantation. For early detection of AKI, various urinary biomarkers such as monocyte chemotactic protein-1, liver-type fatty acid-binding protein, interleukin-18, osteopontin, cystatin C, clusterin and neutrophil gelatinase-associated lipocalin (NGAL) have been identified. Here, we attempt to identify urinary biomarkers for the early detection of tacrolimus-induced AKI in liver transplant patients. Urine samples were collected from 31 patients after living-donor liver transplantation (LDLT). Twenty recipients developed tacrolimus-induced AKI. After the initiation of tacrolimus therapy, urine samples were collected on postoperative days 7, 14, and 21. In patients who experienced AKI during postoperative day 21, additional spot urine samples were collected on postoperative days 28, 35, 42, 49, and 58. The 8 healthy volunteers, whose renal and liver functions were normal, were asked to collect their blood and spot urine samples. The urinary levels of NGAL, monocyte chemotactic protein-1 and liver-type fatty acid-binding protein were significantly higher in patients with AKI than in those without, while those of interleukin-18, osteopontin, cystatin C and clusterin did not differ between the 2 groups. The area under the receiver operating characteristics curve of urinary NGAL was 0.876 (95% confidence interval, 0.800–0.951; P<0.0001), which was better than those of the other six urinary biomarkers. In addition, the urinary levels of NGAL at postoperative day 1 (p = 0.0446) and day 7 (p = 0.0006) can be a good predictive marker for tacrolimus-induced AKI within next 6 days, respectively. In conclusion, urinary NGAL is a sensitive biomarker for tacrolimus-induced AKI, and may help predict renal event caused by tacrolimus therapy in liver transplant patients.  相似文献   
64.
To ascertain the effect of exogenously applied hydrogen peroxide (H2O2) on drought stress, we examined whether the spraying of soybean leaves with H2O2 would alleviate the symptoms of drought stress. Pre-treatment by spraying leaves with H2O2 delayed foliar wilting caused by drought stress compared to leaves sprayed with distilled water (DW). Additionally, the relative water content of drought-stressed leaves pre-treated with H2O2 was higher than that of leaves pre-treated with DW. Therefore, we analyzed the effect of H2O2 spraying on photosynthetic parameters and on the biosynthesis of oligosaccharides related to water retention in leaves during drought stress. Under conditions of drought stress, the net photosynthetic rate and stomatal conductance of leaves pre-treated with H2O2 were higher than those of leaves pre-treated with DW. In contrast to DW spraying, H2O2 spraying immediately caused an increase in the mRNA levels of d-myo-inositol 3-phosphate synthase 2 (GmMIPS2) and galactinol synthase (GolS), which encode key enzymes for the biosynthesis of oligosaccharides known to help plants tolerate drought stress. In addition, the levels of myo-inositol and galactinol were higher in H2O2-treated leaves than in DW-treated leaves. These results indicated that H2O2 spraying enabled the soybean plant to avoid drought stress through the maintenance of leaf water content, and that this water retention was caused by the promotion of oligosaccharide biosynthesis rather than by rapid stomatal closure.  相似文献   
65.

Background

Acute respiratory distress syndrome (ARDS) can result in a life-threatening form of respiratory failure, and established, effective pharmacotherapies are therefore urgently required. Quercetin is one of the most common flavonoids found in fruits and vegetables, and has potent anti-inflammatory and anti-oxidant activities. Quercetin has been demonstrated to exhibit cytoprotective effects through the induction of heme oxygenase (HO)-1. Here, we investigated whether the intratracheal administration of quercetin could suppress lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice as well as the involvement of HO-1 in quercetin’s suppressive effects.

Methods

Mouse model of ALI were established by challenging intratracheally LPS. The wet lung-to-body weight ratio, matrix metalloproteinase (MMP)-9 activities, and pro-inflammatory cytokine productions, including tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 in bronchoalveolar lavage fluid (BALF) were examined in ALI mice with or without quercetin pretreatment. We also examined the effects of quercetin on LPS stimulation in the mouse alveolar macrophage cell line, AMJ2-C11 cells.

Results

Intratracheal administration of quercetin decreased the wet lung-to-body weight ratio. Moreover, quercetin decreased MMP-9 activity and the production of pro-inflammatory cytokines in BALF cells activated by LPS in advance. We determined the expression of quercetin-induced HO-1 in mouse lung, e.g., alveolar macrophages (AMs), alveolar and bronchial epithelial cells. When AMJ2-C11 cells were cultured with quercetin, a marked suppression of LPS-induced pro-inflammatory cytokine production was observed. The cytoprotective effects were attenuated by the addition of the HO-1 inhibitor SnPP. These results indicated that quercetin suppressed LPS-induced lung inflammation, and that an HO-1-dependent pathway mediated these cytoprotective effects.

Conclusions

Our findings indicated that quercetin suppressed LPS-induced lung inflammation, and that an HO-1-dependent pathway mediated these cytoprotective effects. Intratracheal administration of quercetin will lead to new supportive strategies for cytoprotection in these serious lung conditions.  相似文献   
66.
Functional intact liver organoid can be reconstructed in a radial-flow bioreactor when human hepatocellular carcinoma (FLC-5), mouse immortalized sinusoidal endothelial M1 (SEC) and A7 (HSC) hepatic stellate cell lines are cocultured. The structural and functional characteristics of the reconstructed organoid closely resemble the in vivo liver situation. Previous liver organoid studies indicated that cell-to-cell communications might be an important factor for the functional and structural integrity of the reconstructed organoid, including the expression of fenestrae. Therefore, we examined the possible relationship between functional intact gap junctional intercellular communication (GJIC) and fenestrae dynamics in M1-SEC cells. The fine morphology of liver organoid was studied in the presence of (1) irsogladine maleate (IM), (2) oleamide and (3) oleamide followed by IM treatment. Fine ultrastructural changes were studied by transmission electron microscopy (TEM) and scanning electron microscopy (SEM) and compared with control liver organoid data. TEM revealed that oleamide affected the integrity of cell-to-cell contacts predominantly in FLC-5 hepatocytes. SEM observation showed the presence of fenestrae on M1-SEC cells; however, oleamide inhibited fenestrae expression on the surface of endothelial cells. Interestingly, fenestrae reappeared when IM was added after initial oleamide exposure. GJIC mediates the number of fenestrae in endothelial cells of the liver organoid.  相似文献   
67.
68.
Non-small cell lung cancer (NSCLC) is an aggressive lung cancer accounting for approximately 85% of all lung cancer patients. For the patients with Stages IIIA, IIIB, and IIIC, the 5-year survival is low though with the combination with radiotherapy and chemotherapy. In addition, the occurrence of tumor cells (repopulated tumors) that survive irradiation remains a challenge. In our previous report, we subcloned the radiation-surviving tumor cells (IR cells) using the human NSCLC cell line, H1299, and found that the expression of neuropilin-1 (NRP-1) was upregulated in IR cells by the microarray analysis. Here, we investigated the contribution of neuropilin-1 to changes in the characteristics of IR cells. Although there were no differences in angiogenic activity in the tube formation assay between parental and IR cells, the cell motility was increased in IR cells compared to parental cells in the cell migration assay. This enhanced cell motility was suppressed by pretreatment with anti-NRP-1 antibody. Although further studies are necessary to identify other molecules associated with NRP-1, the increase in cellular motility in IR cells might be due to the contribution of NRP-1. Inhibition of NRP-1 would help control tumor malignancy in radiation-surviving NSCLC.  相似文献   
69.

Oil-rich algae have promising potential for a next-generation biofuel feedstock. Pseudochoricystis ellipsoidea MBIC 11204, a novel unicellular green algal strain, accumulates a large amount of oil (lipids) in nitrogen-deficient (–N) conditions. Although the oil bodies are easily visualized by lipophilic staining in the cells, little is known about how oil bodies are metabolically synthesized. Clarifying the metabolic profiles in –N conditions is important to understand the physiological mechanisms of lipid accumulations and will be useful to optimize culture conditions efficiently produce industrial oil. Metabolome and lipidome profiles were obtained, respectively, using capillary electrophoresis- and liquid chromatography-mass spectrometry from P. ellipsoidea in both nitrogen-rich (+N; rapid growth) and –N conditions. Relative quantities of more than 300 metabolites were systematically compared between these two conditions. Amino acids in nitrogen assimilation and N-transporting metabolisms were decreased to 1/20 the amount, or less, in –N conditions. In lipid metabolism, the quantities of neutral lipids increased greatly in –N conditions; however, quantities of nearly all the other lipids either decreased or only changed slightly. The morphological changes in +N and –N conditions were also provided by microscopy, and we discuss their relationship to the metabolic changes. This is the first approach to understand the novel algal strain’s metabolism using a combination of wide-scale metabolome analysis and morphological analysis.

  相似文献   
70.
It is well known that chronic, excessive consumption of alcohol can cause brain damage/structural changes in the regions important for neurocognitive function. Some of the damages are permanent, while others are reversible. Molecular mechanisms underlying alcohol-induced and/or -related brain damage are largely unknown, although it is generally believed that three factors (ethanol, nutritious and hepatic factors) play important roles. Recently, we have been employing a high-throughput proteomics technology to investigate several alcohol-sensitive brain regions from uncomplicated and hepatic cirrhosis-complicated alcoholics to understand the mechanisms of alcohol effects on the CNS at the level of protein expression. The changes of protein expression profiles in the hippocampus of alcoholic subjects were firstly demonstrated using 2D gel electrophoresis-based proteomics. Protein expression profiles identified in the hippocampus of alcoholic subjects were significantly different from those previously identified by our group in other brain regions of the same alcoholic cases, possibly indicating that these different brain regions react differently to chronic alcohol ingestion at the level of protein expression. Identified changes of protein expression associated with astrocyte and oxidative stress may indicate the possibility that increased levels of CNS ammonia and reactive oxygen species induced by alcoholic mild hepatic damage/dysfunction could cause selective damage in astrocytes of the hippocampus. Although our data did not demonstrate any evidence of direct alcohol effects to induce the alteration of protein expression in association with brain damage, high-throughput neuroproteomics approaches have proved to have the potential to dissect the mechanisms of complex brain disorders. Proteomics studies on human hippocampus, an important region for neurocognitive function and psychiatric illnesses (e.g., Alzheimer's disease, alcoholism and schizophrenia) are still sparse, and further investigation is warranted to understand the underlying mechanisms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号