首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   806篇
  免费   47篇
  国内免费   1篇
  2023年   3篇
  2022年   14篇
  2021年   23篇
  2020年   14篇
  2019年   17篇
  2018年   21篇
  2017年   14篇
  2016年   20篇
  2015年   30篇
  2014年   56篇
  2013年   68篇
  2012年   77篇
  2011年   59篇
  2010年   37篇
  2009年   23篇
  2008年   46篇
  2007年   42篇
  2006年   36篇
  2005年   29篇
  2004年   45篇
  2003年   34篇
  2002年   43篇
  2001年   5篇
  2000年   5篇
  1999年   12篇
  1998年   8篇
  1997年   4篇
  1996年   4篇
  1995年   7篇
  1994年   4篇
  1993年   2篇
  1992年   10篇
  1991年   1篇
  1990年   2篇
  1989年   3篇
  1988年   4篇
  1987年   6篇
  1986年   7篇
  1985年   1篇
  1983年   1篇
  1982年   6篇
  1980年   2篇
  1977年   1篇
  1976年   3篇
  1975年   1篇
  1973年   1篇
  1970年   2篇
  1964年   1篇
排序方式: 共有854条查询结果,搜索用时 15 毫秒
41.
42.
After transient exposure to the gaseous hormone ethylene, dark-grown cucumber (Cucumis sativus) hypocotyls developed unusual features. Upon ethylene's removal, the developing epidermis showed significant increases in cell division rates, producing an abundance of guard cells and trichomes. These responses to ethylene depended on the stage of development at the time of ethylene exposure. In the upper region of the hypocotyl, where cells were least differentiated at the onset of ethylene treatment, complex, multicellular protuberances formed. Further down the hypocotyl, where stomata and trichomes were beginning to develop at the onset of ethylene exposure, an increase in the number of stomata and trichomes was observed. Stomatal complexes developing after the ethylene treatment had a significant increase in the number of stomatal subsidiary cells and the number of cells per trichome increased. Analysis of division patterns in stomatal complexes indicated that exposure to ethylene either suspended or altered cell fate. Ethylene also altered cell division polarity, resulting in aberrant stomatal complexes and branched trichomes. To our knowledge, the results of this study demonstrate for the first time that transient treatment with physiological concentrations of ethylene can alter cell fate and increase the propensity of cells to divide.  相似文献   
43.
Six cadmium(II) halide complexes with dl-piperidine-2-carboxylic acid (DL-Hpipe-2), dl-piperidine-3-carboxylic acid (DL-Hpipe-3), and piperidine-4-carboxylic acid (Hpipe-4), have been prepared and characterized by means of IR and Raman spectra and thermal analysis. The crystal structures of [CdCl2(DL-Hpipe-2)(H2O)], [CdBr2(DL-Hpipe-3)], and [CdCl2(Hpipe-4)] have been determined by X-ray diffraction. These three complexes have one-dimensional polymer structures bridged by halide atoms. The crystal of [CdCl2(DL-Hpipe-2)(H2O)] is orthorhombic with the space group Pca2(1). The cadmium atom is in an octahedral geometry, ligated by a carboxyl oxygen atom, two bridging chlorine atoms, a terminal chlorine atom, a water molecule and a carboxyl oxygen atom of a neighboring molecule. The carboxyl oxygen atoms of DL-Hpipe-2 are coordinated to two cadmium atoms. The unit cell consists of two types of one-dimensional polymer structures: [CdCl2(D-Hpipe-2)(H2O)] and [CdCl2(L-Hpipe-2)(H2O)]. Therefore, it is better to write [CdCl2(DL-Hpipe-2)(H2O)] as [CdCl2(D-Hpipe-2)(H2O)][CdCl2(L-Hpipe-2)(H2O)]. The crystal structure of [CdBr2(DL-Hpipe-3)] is monoclinic with space group P2(1). The cadmium atom is in a distorted octahedral geometry ligated by two carboxyl oxygen atoms and four bridging bromine atoms. This complex consists of either D-Hpipe-3 or L-Hpipe-3. Therefore [CdBr2(DL-Hpipe-3)] is written as [CdBr2(D or L-Hpipe-3)]. The crystal of [CdCl2(Hpipe-4)] is monoclinic with space group P2(1)/n. The structure is similar to that of [CdBr2(D or L-Hpipe-3)].  相似文献   
44.
We systematically examined the repertoire of chemokine receptors expressed by human plasma cells. Fresh bone marrow plasma cells and myeloma cells consistently expressed CXCR4, CXCR6, CCR10, and CCR3. Accordingly, plasma cells responded to their respective ligands in chemotaxis and very late Ag-4-dependent cell adhesion to fibronectin. Immobilized CXC chemokine ligand (CXCL)16, a novel transmembrane-type chemokine and CXCR6 ligand, also directly induced adhesion of plasma cells without requiring G(alpha i) signaling or divalent cations. Furthermore, we revealed consistent expression of CXCL12 (CXCR4 ligand), CXCL16 (CXCR6 ligand), and CC chemokine ligand 28 (CCR10 and CCR3 ligand) in tissues enriched with plasma cells including bone marrow, and constitutive expression of CXCL12, CXCL16, and CC chemokine ligand 28 by cultured human bone marrow stromal cells. Collectively, plasma cells are likely to be recruited to bone marrow and other target tissues via CXCR4, CXCR6, CCR10, and CCR3. CXCR6 may also contribute to tissue localization of plasma cells through its direct binding to membrane-anchored CXCL16.  相似文献   
45.
SR-PSOX and CXC chemokine ligand (CXCL)16, which were originally identified as a scavenger receptor and a transmembrane-type chemokine, respectively, are indicated to be identical. In this study, we demonstrate that membrane-bound SR-PSOX/CXCL16 mediates adhesion and phagocytosis of both Gram-negative and Gram-positive bacteria. Importantly, our prepared anti-SR-PSOX mAb, which suppressed chemotactic activity of SR-PSOX, significantly inhibited bacterial phagocytosis by human APCs including dendritic cells. Various scavenger receptor ligands inhibited the bacterial phagocytosis of SR-PSOX. In addition, the recognition specificity for bacteria was determined by only the chemokine domain of SR-PSOX/CXCL16. Thus, SR-PSOX/CXCL16 may play an important role in facilitating uptake of various pathogens and chemotaxis of T and NKT cells by APCs through its chemokine domain.  相似文献   
46.
Although it is widely assumed that the cell type and genotype of the donor cell affect the efficiency of somatic cell cloning, little systematic analysis has been done to verify this assumption. The present study was undertaken to examine whether donor cell type, donor genotype, or a combination thereof increased the efficiency of mouse cloning. Initially we assessed the developmental ability of embryos that were cloned from cumulus or immature Sertoli cells with six different genotypes (i.e., 2 x 6 factorial). Significantly better cleavage rates were obtained with cumulus cells than with Sertoli cells (P < 0.005, two-way ANOVA), which probably was due to the superior cell-cycle synchrony of cumulus cells at G0/G1. After embryo transfer, there was a significant effect of cell type on the birth rate, with Sertoli cells giving the better result (P < 0.005). Furthermore, there was a significant interaction (P < 0.05) between the cell type and genotype, which indicates that cloning efficiency is determined by a combination of these two factors. The highest mean birth rate (10.8 +/- 2.1%) was obtained with (B6 x 129)F1 Sertoli cells. In the second series of experiments, we examined whether the developmental ability of clones with the wild-type genotype (JF1) was improved when combined with the 129 genotype. Normal pups were cloned from cumulus and immature Sertoli cells of the (129 x JF1)F1 and (JF1 x 129)F1 genotypes, whereas no pups were born from cells with the (B6 x JF1)F1 genotype. The present study clearly demonstrates that the efficiency of somatic cell cloning, and in particular fetal survival after embryo transfer, may be improved significantly by choosing the appropriate combinations of cell type and genotype.  相似文献   
47.
48.
Summary.  Previous work has demonstrated that some endogenous plant gene promoters are active in selective companion cells of the phloem, depending on organ types and developmental stages. Here we report that the Commelina yellow mottle virus (CoYMV) promoter is active in the companion cells of leaves, stems and roots of transgenic Nicotiana tabacum cv. Xanthi NN, using β-glucuronidase (GUS) as a reporter. Thus, the CoYMV promoter has a broad organ specificity. This promoter can be useful in molecular studies on the functions of companion cells in many aspects of phloem biology, such as regulation of long-distance transport, macromolecular traffic, plant development and interaction with pathogens. It may also be useful in engineering crops that produce specific gene products in the companion cells to block long-distance movement of pathogens. Received February 5, 2002; accepted March 27, 2002; published online July 4, 2002 RID="*" ID="*" Correspondence and reprints: Department of Plant Biology and Plant Biotechnology Center, 207 Rightmire Hall, Ohio State University, 1060 Carmack Road, Columbus, OH 43210, U.S.A.  相似文献   
49.
Yoshimura M  Nakano Y  Fukamachi H  Koga T 《FEBS letters》2002,523(1-3):119-122
The antibacterial agent 3-chloro-DL-alanine (3CA) is an inhibitor of peptidoglycan synthesis. Fusobacterium nucleatum and Porphyromonas gingivalis, the bacteria responsible for oral malodor, are shown to be resistant to 1 mM 3CA, whereas Streptococcus mutans and Escherichia coli are sensitive to this antibacterial agent at the same concentration. We isolated the 3CA resistance gene from F. nucleatum and showed that the gene encodes an L-methionine-alpha-deamino-gamma-mercaptomethane-lyase that catalyzes the alpha,gamma-elimination of L-methionine to produce methyl mercaptan. The enzyme also exhibits 3CA chloride-lyase (deaminating) activity. This antibacterial agent is expected to be useful for specific selection of malodorous oral bacteria producing high amounts of methyl mercaptan.  相似文献   
50.
Fractalkine/CX3C ligand 1 and its receptor CX3CR1 are known to mediate both cell adhesion and cell migration. Here we show that CX3CR1 defines peripheral blood cytotoxic effector lymphocytes commonly armed with intracellular perforin and granzyme B, which include NK cells, gammadelta T cells, and terminally differentiated CD8(+) T cells. In addition, soluble fractalkine preferentially induced migration of cytotoxic effector lymphocytes. Furthermore, interaction of cytotoxic effector lymphocytes with membrane-bound fractalkine promoted subsequent migration to the secondary chemokines, such as macrophage inflammatory protein-1beta/CC ligand 4 or IL-8/CXC ligand 8. Thus, fractalkine expressed on inflamed endothelium may function as a vascular regulator for cytotoxic effector lymphocytes, regardless of their lineage and mode of target cell recognition, through its ability to capture them from blood flow and to promote their emigration in response to other chemokines.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号