首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1085篇
  免费   67篇
  国内免费   2篇
  1154篇
  2022年   5篇
  2021年   16篇
  2020年   11篇
  2019年   6篇
  2018年   14篇
  2017年   5篇
  2016年   24篇
  2015年   41篇
  2014年   35篇
  2013年   62篇
  2012年   68篇
  2011年   63篇
  2010年   36篇
  2009年   36篇
  2008年   78篇
  2007年   78篇
  2006年   82篇
  2005年   69篇
  2004年   78篇
  2003年   64篇
  2002年   67篇
  2001年   7篇
  2000年   13篇
  1999年   17篇
  1998年   22篇
  1997年   16篇
  1996年   17篇
  1995年   14篇
  1994年   17篇
  1993年   14篇
  1992年   5篇
  1991年   14篇
  1990年   9篇
  1989年   5篇
  1988年   3篇
  1985年   2篇
  1984年   2篇
  1983年   2篇
  1982年   3篇
  1981年   6篇
  1980年   6篇
  1978年   2篇
  1977年   1篇
  1976年   2篇
  1975年   3篇
  1974年   4篇
  1973年   2篇
  1972年   2篇
  1969年   1篇
  1967年   1篇
排序方式: 共有1154条查询结果,搜索用时 15 毫秒
101.
The phase transitions in fully hydrated dipalmitoylphosphatidylcholine (DPPC) and DPPC/water/ethanol phases have been studied by lowangle time-resolved x-ray diffraction under conditions similar to those employed in calorimetry (scan rates 0.05-0.5°C/min and uniform temperature throughout the samples). This approach provides more adequate characterization of the equilibrium transition pathways and allows for close correlations between structural and thermodynamic data. No coexistence of the rippled gel (Pβ') and liquid-crystalline (Lα) phases was found in the main transition of DPPC; rather, a loss of correlation in the lamellar structure, observed as broadening of the lamellar reflections, takes place in a narrow temperature range of ~100 mK at the transition midpoint. Formation of a long-living metastable phase, denoted by Pβ'(mst), differing from the initial Pβ' was observed in cooling direction by both x-ray diffraction and calorimetry. No direct conversion of Pβ'(mst) into Pβ' occurs for over 24 h but only by way of the phase sequence Pβ'(mst) → Lβ' → Pβ'. According to differential scanning calorimetry (DSC), the enthalpy of the Pβ'(mst)-Lα transition is by ~5% lower than that of the Pβ'-Lα transition. The effects of ethanol (Rowe, E. S. 1983. Biochemistry. 22:3299-3305; Simon, S. A., and T. J. McIntosh. 1984. Biochim. Biophys. Acta 773:169-172) on the mechanism and reversibility of the DPPC main transition were clearly visualized. At ethanol concentrations inducing formation of interdigitated gel phase, the main transition proceeds through a coexistence of the initial and final phases over a finite temperature range. During the subtransition in DPPC recorded at scan rate 0.3°C/min, a smooth monotonic increase of the lamellar spacing from its subgel (Lc) to its gel (Lβ') phase value takes place. The width of the lamellar reflections remains unchanged during this transformation. This provides grounds to propose a “sequential” relaxation mechanism for the subgel-gel transition which is not accompanied by growth of domains of the final phase within the initial one.  相似文献   
102.
Summary Single point mutations in the upstream region of exon 6 of the -galactosidase A gene were found in two Japanese cases of the cardiac form of Fabry disease; 301ArgGln (902GA) in a case that has already been published and 279GlnGlu (835CG) in a new case. They both expressed markedly low, but significant, amounts of residual activity in COS-1 cells. In contrast, two unrelated cases with classic Fabry disease were found to have different point mutations, which showed a complete loss of enzyme activity in a transient expression assay; 328GlyArg (982GA) in the downstream region of exon 6 in one case and two combined mutations, 66GluGln (196GC)/112ArgCys (334CT), in exon 2 in the other. We conclude, on the basis of the results recorded in this study and those in previous reports, that the pathogenesis of atypical Fabry disease is closely associated with point mutations in the upstream region of exon 6 of the -galactosidase A gene.  相似文献   
103.
CCN3, a member of the CCN protein family, inhibits osteoblast differentiation in vitro. However, the role of CCN3 in bone regeneration has not been well elucidated. In this study, we investigated the role of CCN3 in bone regeneration. We identified the Ccn3 gene by microarray analysis as a highly expressed gene at the early phase of bone regeneration in a mouse bone regeneration model. We confirmed the up-regulation of Ccn3 at the early phase of bone regeneration by RT-PCR, Western blot, and immunofluorescence analyses. Ccn3 transgenic mice, in which Ccn3 expression was driven by 2.3-kb Col1a1 promoter, showed osteopenia compared with wild-type mice, but Ccn3 knock-out mice showed no skeletal changes compared with wild-type mice. We analyzed the bone regeneration process in Ccn3 transgenic mice and Ccn3 knock-out mice by microcomputed tomography and histological analyses. Bone regeneration in Ccn3 knock-out mice was accelerated compared with that in wild-type mice. The mRNA expression levels of osteoblast-related genes (Runx2, Sp7, Col1a1, Alpl, and Bglap) in Ccn3 knock-out mice were up-regulated earlier than those in wild-type mice, as demonstrated by RT-PCR. Bone regeneration in Ccn3 transgenic mice showed no significant changes compared with that in wild-type mice. Phosphorylation of Smad1/5 was highly up-regulated at bone regeneration sites in Ccn3 KO mice compared with wild-type mice. These results indicate that CCN3 is up-regulated in the early phase of bone regeneration and acts as a negative regulator for bone regeneration. This study may contribute to the development of new strategies for bone regeneration therapy.  相似文献   
104.
The mechanism whereby Escherichia coli K12 accumulates orotic acid in culture fluid was studied. Pyrimidine compounds were incorporated effectively into cells of E. coli K12, stimulated the growth, and depressed the accumulation; while purine compounds were not so much consumed by the microorganism for its growth, and affected the accumulation to a lesser extent. On the other hand, E. coli B unable to accumulate orotic acid utilized less effectively pyrimidine compounds for its growth than strain K12.

It is supposed, therefore, that in the de novo pathway for pyrimidine synthesis in E. coli K12 the step from orotic acid to 5′-UMP is genetically depressed so that orotic acid is accumulated when pyrimidine compounds, that would cause a feedback inhibition of orotic acid synthesis upon incorporation, are not supplemented.  相似文献   
105.
We previously found a very large NAD-dependent glutamate dehydrogenase with approximately 170?kDa subunit from Janthinobacterium lividum (Jl-GDH) and predicted that GDH reaction occurred in the central domain of the subunit. To gain further insights into the role of the central domain, several single point mutations were introduced. The enzyme activity was completely lost in all single mutants of R784A, K810A, K820A, D885A, and S1142A. Because, in sequence alignment analysis, these residues corresponded to the residues responsible for glutamate binding in well-known small GDH with approximately 50?kDa subunit, very large GDH and well-known small GDH may share the same catalytic mechanism. In addition, we demonstrated that C1141, one of the three cysteine residues in the central domain, was responsible for the inhibition of enzyme activity by HgCl2, and HgCl2 functioned as an activating compound for a C1141T mutant. At low concentrations, moreover, HgCl2 was found to function as an activating compound for a wild-type Jl-GDH. This suggests that the mechanism for the activation is entirely different from that for the inhibition.  相似文献   
106.
The stereoselective synthesis of 1- and 2-O-α-d-cellotriosyl-3-deoxy-2(R)- and 2(S)-glycerols, which determined the structure of rhynchosporoside produced by Rhynchosporium secalis, and their phytotoxicity toward the host plant (Hordeum vulgare) are described in detail.  相似文献   
107.
All organisms ensure once and only once replication during S phase through a process called replication licensing. Cdt1 is a key component and crucial loading factor of Mcm complex, which is a central component for the eukaryotic replicative helicase. In higher eukaryotes, timely inhibition of Cdt1 by Geminin is essential to prevent rereplication. Here, we address the mechanism of DNA licensing using purified Cdt1, Mcm and Geminin proteins in combination with replication in Xenopus egg extracts. We mutagenized the 223th arginine of mouse Cdt1 (mCdt1) to cysteine or serine (R-S or R-C, respectively) and 342nd and 346th arginines constituting an arginine finger-like structure to alanine (RR-AA). The RR-AA mutant of Cdt1 could not only rescue the DNA replication activity in Cdt1-depleted extracts but also its specific activity for DNA replication and licensing was significantly increased compared to the wild-type protein. In contrast, the R223 mutants were partially defective in rescue of DNA replication and licensing. Biochemical analyses of these mutant Cdt1 proteins indicated that the RR-AA mutation disabled its functional interaction with Geminin, while R223 mutations resulted in ablation in interaction with the Mcm2~7 complex. Intriguingly, the R223 mutants are more susceptible to the phosphorylation-induced inactivation or chromatin dissociation. Our results show that conserved arginine residues play critical roles in interaction with Geminin and Mcm that are crucial for proper conformation of the complexes and its licensing activity.  相似文献   
108.
The intramolecular and intermolecular perturbation on the electronic state of FAD was investigated by FTIR spectroscopy by using the C=O stretching vibrations as probes in D(2)O solution. Natural and artificial FADs, i.e. 8-CN-, 8-Cl-, 8-H-, 8-OCH(3)-, and 8-NH(2)-FAD labelled by 2-(13)C, (18)O=C(2), or 4,10a-(13)C(2) were used for band assignments. The C(2)=O and C(4)=O stretching vibrations of oxidized FAD were shifted systematically by the substitution at the 8-position, i.e. the stronger the electron-donating ability (NH(2) > OCH(3) > CH(3) > H > Cl > CN) of the substituent, the lower the wavenumber region where both the C(2)=O and C(4)=O bands appear. In contrast, the C(4)=O band of anionic reduced FAD scarcely shifted. The 1,645-cm(-1) band containing C(2)=O stretching vibration shifted to 1,630 cm(-1) in the medium-chain acyl-CoA dehydrogenase (MCAD)-bound state, which can be explained by hydrogen bonds at C(2)=O of the flavin ring. The band was observed at 1,607 cm(-1) in the complex of MCAD with 3-thiaoctanoyl-CoA. The 23 cm(-1) shift was explained by the charge-transfer interaction between oxidized flavin and the anionic acyl-CoA. In the case of electron-transferring flavoprotein, two bands associated with the C(4)=O stretching vibration were obtained at 1,712 and 1,686 cm(-1), providing evidence for the multiple conformations of the protein.  相似文献   
109.
The purpose of the present study is to clarify the effects of hypoxia on the activity of the dopaminergic neurons in the brain and its mechanism of action. For this purpose, the effects of hypoxia on the extracellular levels of 3,4-dihy-droxyphenylethylamine (dopamine) were examined in the rat Striatum using in vivo brain microdialysis in the presence or absence of pretreatment with either tetrodotoxin (a blocker of voltage-dependent sodium channels) or nomifensine (a blocker of dopamine reuptake). Exposure to various degrees of hypoxia (15, 10, and 8% O2 in N2) increased dopamine levels in striatal dialysates to 200, 400, and 1,100%, respectively, of the control value. On reoxygenation, dopamine levels in the dialysates rapidly returned to the control level. Reexposure to hypoxia increased the dopamine levels to the same extent as during the first exposure. After addition of tetrodotoxin (40 mUM) to the perfusion fluid or pretreatment with nomifensine (100 mg/kg, i.p.), exposure to hypoxia no longer increased the dopamine levels. These results suggest that although hypoxia induces an increase in the extracellular dopamine levels (hence, an apparent increase in the activity of the dopaminergic neurons), this increase is not the result of an increase in dopamine release itself, but rather the result of inhibition of the dopamine reuptake mechanism.  相似文献   
110.
A type II arabinogalactan-degrading enzyme (FoGal1) was purified from Fusarium oxysporum 12S, and the corresponding cDNA was isolated. FoGal1 had high similarity to enzymes of glycoside hydrolase family 5. Treatment of larch wood arabinogalactan with the recombinant enzyme indicated that FoGal1 is a β-1,6-galactanase that preferentially debranches β-1,6-galactobiose from the substrate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号