首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   446篇
  免费   35篇
  2022年   1篇
  2021年   4篇
  2020年   3篇
  2019年   2篇
  2018年   12篇
  2017年   3篇
  2016年   5篇
  2015年   12篇
  2014年   6篇
  2013年   22篇
  2012年   17篇
  2011年   22篇
  2010年   10篇
  2009年   19篇
  2008年   15篇
  2007年   20篇
  2006年   31篇
  2005年   21篇
  2004年   20篇
  2003年   20篇
  2002年   15篇
  2001年   17篇
  2000年   27篇
  1999年   18篇
  1998年   7篇
  1997年   5篇
  1996年   4篇
  1995年   4篇
  1994年   3篇
  1993年   5篇
  1992年   16篇
  1991年   5篇
  1990年   11篇
  1989年   7篇
  1988年   4篇
  1987年   8篇
  1986年   8篇
  1985年   4篇
  1984年   4篇
  1983年   6篇
  1982年   5篇
  1981年   4篇
  1980年   10篇
  1979年   3篇
  1978年   5篇
  1976年   5篇
  1975年   4篇
  1969年   1篇
  1959年   1篇
排序方式: 共有481条查询结果,搜索用时 156 毫秒
111.
The intestinal immune system is constantly challenged by commensal bacteria; therefore, it must maintain quiescence via several regulatory mechanisms. Although intestinal macrophages (Ms) have been implicated in repression of excessive inflammation, it remains unclear how their functions are regulated during inflammation. In this study, we report that semaphorin 7A (Sema7A), a GPI-anchored semaphorin expressed in intestinal epithelial cells (IECs), induces IL-10 production by intestinal M?s to regulate intestinal inflammation. Sema7A-deficient mice showed severe signs of dextran sodium sulfate-induced colitis due to reduced intestinal IL-10 levels. We further identified CX3CR1(+)MHC class II(int)F4/80(hi)CD11b(hi) M?s as the main producers of IL-10 via αvβ1 integrin in response to Sema7A. Notably, Sema7A was predominantly expressed on the basolateral side of IECs, and its expression pattern was responsible for protective effects against dextran sodium sulfate-induced colitis and IL-10 production by M?s during interactions between IECs and M?s. Furthermore, we determined that the administration of recombinant Sema7A proteins ameliorated the severity of colitis, and these effects were diminished by IL-10-blocking Abs. Therefore, our findings not only indicate that Sema7A plays crucial roles in suppressing intestinal inflammation through αvβ1 integrin, but also provide a novel mode of IL-10 induction via interactions between IECs and M?s.  相似文献   
112.
BACKGROUND INFORMATION: Death receptors (DRs) induce intracellular signalling upon engagement of their cognate ligands, leading to apoptosis, cell survival or pro-inflammatory responses. In mammals, DR signalling is mediated by the recruitment of several DD (death domain)-containing molecules, such as FADD (Fas-associated DD) and RIP1 (receptor-interacting protein 1). RESULTS: To elucidate the molecular mechanisms of intracellular DR signalling in Xenopus, we have isolated cDNAs encoding xFADD (Xenopus FADD), and xRIP1 and its short isoform xRIP1beta, which is produced by alternative splicing of the xRIP1 gene. These DD-containing proteins interacted with Xenopus DR members xDR-M1 and xDR-M2 through their DDs in co-transfected HEK-293T cells. Overexpression of xFADD activated not only xCaspase 8, but also AP-1 (activator protein 1), which reflects activation of JNK (c-Jun N-terminal kinase) and NF-kappaB (nuclear factor kappaB). A comparative analysis of xRIP1, a kinase-dead mutant of xRIP1 and xRIP1beta indicated that the kinase activity of xRIP1 was required for the activation of AP-1 and NF-kappaB. Interestingly, xFADD and xRIP1 interacted with each other via their DDs, and the expression of a mutant xRIP1 containing only the DD (xRIP1-DD) repressed the xFADD-induced activation of NF-kappaB and AP-1. xFADD and xRIP1 synergistically induced the activation of AP-1 and NF-kappaB, both of which were partially mediated by TRAF2 (tumour-necrosis-factor-receptor-associated factor 2) and TAK1 (transforming-growth-factor-beta-activated kinase 1). We also found that the activation pathways of NF-kappaB induced by xDR-M2 were inhibited by xRIP1-DD. CONCLUSIONS: Xenopus FADD, RIP1 and its splice variant RIP1beta have been characterized. Interaction of xFADD and xRIP1 induced synergistic activation of JNK and NF-kappaB. In addition, the NF-kappaB activation induced by xDR-M2 was partially mediated by xRIP1.  相似文献   
113.
114.
Recent genetic evidence demonstrated that Shc is a critical molecule for T cell activation and differentiation. However, how Shc is coupled to the T cell antigen receptor (TCR) has not been clearly characterized. Here we report that the tyrosine kinase Lck functions as a connecting molecule for TCR and Shc. Lck plays a critical role in TCR signal transduction by phosphorylating the immuno-receptor tyrosine based activation motif (ITAM). Our data shows that the PTB domain of Shc binds the SH2/3 domains of Lck in a phosphotyrosine-independent manner. Inhibition of the Lck/Shc interaction led to the loss of IL-2 promoter activation, confirming that the role of Shc in IL-2 production requires its interaction with Lck. Together, the data show that Shc is connected to the activated TCR via direct interaction with Lck.  相似文献   
115.
The Erysiphaceae are a group of obligately biotrophic fungi that cause powdery mildew disease of angiosperms. Due to their inability to be cultured on artificial media, the taxonomy of the Erysiphaceae has generally been based on the morphological characteristics of fresh and herbarium specimens. Thus, several morphological species with wide host ranges have long been maintained in this family, even though they clearly consist of several biological species. Erysiphe galii has been known as a powdery mildew of Galium spp. Recently, the former E. galii var. galii has been reassessed as Neoerysiphe galii and E. galii var. riedliana as Golovinomyces riedlianus, along with a taxonomic revision of the generic concept of the Erysiphaceae. The present study was conducted to evaluate the validity of the taxonomic revision of the two varieties of E. galii. During the course of this study, we found that the Galium powdery mildews consist of at least four different species, viz. Neoerysiphe galii, Golovinomyces orontii, G. riedlianus, and an unknown species collected in Argentina. The latter species is described as a new species, Golovinomyces calceolariae. The three species belonging to Golovinomyces are morphologically very similar to each other, i.e. the discrimination between them is rather difficult. The morphological differences of the three Golovinomyces species of Galium are discussed.  相似文献   
116.
The mitogen-activated protein kinase (MAPK) cascades, including c-Jun N-terminal kinase (JNK), are composed of a MAPK, MAPK kinase (MAPKK), and MAPKK kinase (MAPKKK). Previously, we reported that JNK-binding protein 1 (JNKBP1) enhances JNK activation induced by the TGF-β-activated kinase1 (TAK1) MAPKKK in transfected cells. We have investigated whether JNKBP1 functions as an adaptor protein for nuclear factor (NF)-κB activation mediated by TAK1 in COS-7 cells. Co-expression experiments showed that JNKBP1 interacted with not only TAK1, but also with its upstream regulators, TNF-receptor associated factors 2 and 6 (TRAF2 and TRAF6). An endogenous interaction between JNKBP1 and TRAF2 or TAK1 was confirmed by immunoprecipitation analysis. We also found that JNKBP1 could enhance the NF-κB activation induced by TAK1 and TRAF2, and could promote TRAF2 polyubiquitination. These results suggest a scaffolding role for JNKBP1 in the TRAF2-TAK1-NF-κB signaling pathway.  相似文献   
117.
We studied nuclear protein phosphorylation in the rat suprachiasmatic nucleus (SCN) and found that a nuclear fraction of the SCN contained histone H1 kinase activity that periodically fluctuated with a diurnal rhythm, reaching a maximum at the midpoint of the light phase and a minimum at the midpoint of the dark phase. A p13suc1-bound fraction from the SCN nuclear fraction also exhibited diurnally fluctuating histone H1 kinase activity. Using in situ kinase assay, three histone H1 kinases, p45PFK, p100PFK, and p200PFK (termed periodically fluctuating protein kinases, or PFKs) were found in the p13suc1-bound fractions. p45PFK exhibited the highest level of light/dark cycle phosphorylation activity fluctuation. p45PFK highly phosphorylated the Ser-Pro-rich region of CLOCK, the putative physiological target. These results suggest that PFKs, especially p45PFK, are involved in circadian clock-related signal transduction and gene expression, through the phosphorylation of target proteins such as CLOCK.  相似文献   
118.
119.
Ischemic insult to the heart produces myocyte Ca2+ ([Ca2+]i) overload. However, little is known about spatiotemporal changes in [Ca2+]i within the ischemic heart in situ at the cellular level. Using real-time confocal microscopy, we successfully visualized [Ca2+]i dynamics at the border zone on the subepicardial myocardium of the heart 2 h after coronary ligations followed by loading with fluo 3/AM. Three distinct regions were identified in the acute infarcted heart. In intact regions, the myocytes showed spatially uniform Ca2+ transients synchronously to QRS complex in the electrocardiogram. The myocytes at the infarcted regions showed no fluorescence intensity (FI). At the border zones between the intact and infarcted regions, Ca2+ waves emerged sporadically and randomly, instead of Ca2+ transients, at a mean frequency of 11.5 ± 8.5 min/cell with a propagation velocity of 151.0 ± 35.7 m/sec along the longitudinal axis of the individual myocytes. In addition, some myocytes within the border zone exhibited homogeneously high static FI, indicating severe Ca2+ overload. In summary, we provided the first direct evidence of abnormal [Ca2+]i dynamics in acute infarcted hearts at the cellular level. The observed diversity in spatiotemporal [Ca2+]i dynamics at the border zone may contribute to the arrhythmias or contractile failure in acute myocardial infarction.  相似文献   
120.
Recent studies show that during slow freezing of biological cells, the cells may be also injured by not only chemical damage but also mechanical damage induced by ice crystal compression. A new experimental procedure is developed to quantify cell destruction by deformation with two parallel surfaces. The viability of cells (prostatic carcinoma cells, 17.5 microns in mean diameter) is measured as a function of gap size ranging from 3.5 microns to 16.2 microns at 0 degree C, 23 degrees C and 37 degrees C. The viability at a smaller gap size is significantly lower at 37 degrees C than at 23 degrees C, while the difference between 0 degree C and 23 degrees C is much smaller. This suggests that deformation damage is related to the deformation of the cytoskeleton rather than the mechanical properties of the lipid membrane.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号