首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3800篇
  免费   380篇
  2022年   19篇
  2021年   54篇
  2020年   33篇
  2019年   35篇
  2018年   56篇
  2017年   42篇
  2016年   89篇
  2015年   133篇
  2014年   176篇
  2013年   191篇
  2012年   264篇
  2011年   257篇
  2010年   182篇
  2009年   183篇
  2008年   226篇
  2007年   253篇
  2006年   188篇
  2005年   237篇
  2004年   201篇
  2003年   207篇
  2002年   207篇
  2001年   39篇
  2000年   41篇
  1999年   54篇
  1998年   82篇
  1997年   52篇
  1996年   44篇
  1995年   42篇
  1994年   49篇
  1993年   36篇
  1992年   24篇
  1991年   31篇
  1990年   37篇
  1989年   44篇
  1988年   33篇
  1987年   27篇
  1986年   23篇
  1985年   23篇
  1984年   26篇
  1983年   30篇
  1982年   25篇
  1981年   22篇
  1980年   27篇
  1979年   16篇
  1978年   12篇
  1977年   11篇
  1976年   14篇
  1975年   11篇
  1974年   17篇
  1973年   12篇
排序方式: 共有4180条查询结果,搜索用时 15 毫秒
91.
1. Techniques and experiments are described concerned with the millisecond kinetics of EPT-detectable changes brought about in cytochrome c oxidase by reduced cytochrome c and, after reduction with various agents, by reoxidation with O2 or ferricyanide. Some experiments in the presence of ligands are also reported. Light absorption was monitored by low-temperature reflectance spectroscopy. 2. In the rapid phase of reduction of cytochrome c oxidase by cytochrome c (less than 50 ms) approx. 0.5 electron equivalent per heme a is transferred mainly to the low-spin heme component of cytochrome c oxidase and partly to the EPR-detectable copper. In a slow phase (less than 1 s) the copper is reoxidized and high-spin ferric heme signals appear with a predominant rhombic component. Simultaneously the absorption band at 655 nm decreases and the Soret band at 444 nm appears between the split Soret band (442 and 447 nm) of reduced cytochrome a. 3. On reoxidation of reduced enzyme by oxygen all EPR and optical features are restored within 6 ms. On reoxidation by O2 in the presence of an excess of reduced cytochrome c, states can be observed where the low-spin heme and copper signals are largely absent but the absorption at 655 nm is maximal, indicating that the low-spin heme and copper components are at the substrate side and the component(s) represented in the 655 nm absorption at the O2 side of the system. On reoxidation with ferricyanide the 655 nm absorption is not readily restored but a ferric high-spin heme, represented by a strong rhombic signal, accumulates. 4. On reoxidation of partly reduced enzyme by oxygen, the rhombic high-spin signals disappear within 6 ms., whereas the axial signals disappear more slowly, indicating that these species are not in rapid equilibrium. Similar observations are made when partly reduced enzyme is mixed with CO. 5. The results of this and the accompanying paper are discussed and on this basis an assignment of the major EPR signals and of the 655 nm absorption is proposed, which in essence is that published previously (Hartzell, C.R., Hansen, R.E. and Beinert, H. (1973) Proc. Natl. Acad. Sci. U.S. 70, 2477-2481). Both the low-spin (g=o; 2.2; 1.5) and slowly appearing high-spin (g=6; 2) signals are attributed to ferric cytochrome a, whereas the 655 nm absorption is thought to arise from ferric cytochrome a3, when it is present in a state of interaction with EPR-undectectable copper. Alternative possibilities and possible inconsistencies with this proposal are discussed.  相似文献   
92.
1. Techniques and experiments are described concerned with the millisecond kinetics of EPR-detectable changes brought about in cytochrome c oxidase by reduced cytochrome c and, after reduction with various agents, by reoxidation with O2 or ferricyanide. Some experiments in the presence of ligands are also reported. Light absorption was monitored by low-temperature reflectance spectroscopy.2. In the rapid phase of reduction of cytochrome c oxidase by cytochrome c (< 50 ms) approx. 0.5 electron equivalent per hame a is transferred mainly to the low-spin heme component of cytochrome c oxidase and partly to the EPR-detectable copper. In a slow phase (> 1 s) the copper is reoxidized and high-spin ferric heme signals appear with a predominant rhombic component. Simultaneously the absorption band at 655 nm decreases and the Soret band at 444 nm appears between the split Soret band (442 and 447 nm) of reduced cytochrome a.3. On reoxidation of reduced enzyme by oxygen all EPR and optical features are restored within 6 ms. On reoxidation by O2 in the presence of an excess of reduced cytochrome c, states can be observed where the low-spin heme and copper signals are largely absent but the absorption at 655 nm is maximal, indicating that the low-spin heme and copper components are at the substrate side and the component(s) represented in the 655 nm absorption at the O2 side of the system. On reoxidation with ferricyanide the 655 nm absorption is not readily restored but a ferric high-spin heme, represented by a strong rhombic signal, accumulates.4. On reoxidation of partly reduced enzyme by oxygen, the rhombic high-spin signals disappear within 6 ms, whereas the axial signals disappear more slowly, indicating that these species are not in rapid equilibrium. Similar observations are made when partly reduced enzyme is mixed with CO.5. The results of this and the accompanying paper are discussed and on this basis an assignment of the major EPR signals and of the 655 nm absorption is proposed, which in essence is that published previously (Hartzell, C. R., Hansen, R. E. and Beinert, H. (1973) Proc. Natl. Acad. Sci. U.S. 70, 2477–2481). Both the low-spin (g = 3; 2.2; 1.5) and slowly appearing high-spin (g = 6; 2) signals are attributed to ferric cytochrome a, whereas the 655 nm absorption is thought to arise from ferric cytochrome a3, when it is present in a state of interaction with EPR-undetectable copper. Alternative possibilities and possible inconsistencies with this proposal are discussed.  相似文献   
93.
It is known that the home-cage maternal behavior of rats which become maternal after daily pup exposure (sensitization) is almost indistinguishable from that of lactating mothers, but that sensitized and lactating rats can be distinguished by their pup-retrieval performance in a T-maze extension of the home cage. The present study explored this difference further. Postpartum mothers which could not suckle due to prior nipple removal (thelectomy) retrieved as well, if not better, than intact controls in the T-maze. Hormonal induction of maternal behavior (in ? 3 days) was carried out by hysterectomy-ovariectomy plus 100 μg/kg estradiol benzoate; the performance of these females was similar to that of the postpartum groups. In contrast, only a small percentage of the sensitized mothers retrieved in the T-maze, whether the latency to onset of their maternal behavior was long (4–10 days) or short (? 3 days). Thus, hormonal factors associated with pregnancy and/or parturition, but not suckling stimulation, may facilitate T-maze retrieval of pups. The possible ethological significance of the T-maze test as a measure of maternal responsiveness is discussed.  相似文献   
94.
Cystic fibrosis results from mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-dependent protein kinase A (PKA) and ATP-regulated chloride channel. Here, we demonstrate that nucleoside diphosphate kinase B (NDPK-B, NM23-H2) forms a functional complex with CFTR. In airway epithelia forskolin/IBMX significantly increases NDPK-B co-localisation with CFTR whereas PKA inhibitors attenuate complex formation. Furthermore, an NDPK-B derived peptide (but not its NDPK-A equivalent) disrupts the NDPK-B/CFTR complex in vitro (19-mers comprising amino acids 36–54 from NDPK-B or NDPK-A). Overlay (Far-Western) and Surface Plasmon Resonance (SPR) analysis both demonstrate that NDPK-B binds CFTR within its first nucleotide binding domain (NBD1, CFTR amino acids 351–727). Analysis of chloride currents reflective of CFTR or outwardly rectifying chloride channels (ORCC, DIDS-sensitive) showed that the 19-mer NDPK-B peptide (but not its NDPK-A equivalent) reduced both chloride conductances. Additionally, the NDPK-B (but not NDPK-A) peptide also attenuated acetylcholine-induced intestinal short circuit currents. In silico analysis of the NBD1/NDPK-B complex reveals an extended interaction surface between the two proteins. This binding zone is also target of the 19-mer NDPK-B peptide, thus confirming its capability to disrupt NDPK-B/CFTR complex. We propose that NDPK-B forms part of the complex that controls chloride currents in epithelia.  相似文献   
95.
A new method for preparation of sections of undecalcified bone is described. Samples of ovine bone were embedded in methylmethacrylate and thick-sectioned with a cutoff machine or commercial band saw. Composite slides were prepared by gluing white acrylic to glass using cyanoacrylate glue. Bone sections were glued to the composite slide and then surface polished by grinding or ultramilling. The polished surface of the section was then etched and stained. The techniques described in this paper reduce the time spent grinding or milling sections and improve resolution of surface-stained features of undecalcified bone sections.  相似文献   
96.
97.
Assessing modes of skeletal repair is essential for developing therapies to be used clinically to treat fractures. Mechanical stability plays a large role in healing of bone injuries. In the worst-case scenario mechanical instability can lead to delayed or non-union in humans. However, motion can also stimulate the healing process. In fractures that have motion cartilage forms to stabilize the fracture bone ends, and this cartilage is gradually replaced by bone through recapitulation of the developmental process of endochondral ossification. In contrast, if a bone fracture is rigidly stabilized bone forms directly via intramembranous ossification. Clinically, both endochondral and intramembranous ossification occur simultaneously. To effectively replicate this process investigators insert a pin into the medullary canal of the fractured bone as described by Bonnarens4. This experimental method provides excellent lateral stability while allowing rotational instability to persist. However, our understanding of the mechanisms that regulate these two distinct processes can also be enhanced by experimentally isolating each of these processes. We have developed a stabilization protocol that provides rotational and lateral stabilization. In this model, intramembranous ossification is the only mode of healing that is observed, and healing parameters can be compared among different strains of genetically modified mice 5-7, after application of bioactive molecules 8,9, after altering physiological parameters of healing 10, after modifying the amount or time of stabilization 11, after distraction osteogenesis 12, after creation of a non-union 13, or after creation of a critical sized defect. Here, we illustrate how to apply the modified Ilizarov fixators for studying tibial fracture healing and distraction osteogenesis in mice.  相似文献   
98.
99.
100.
Education Reform in Democratic Spain. Oliver Boyd-Barrett and Pamela O'Malley, eds. New York: Routledge, 1995. 265 pp.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号