首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   164篇
  免费   26篇
  2021年   3篇
  2017年   2篇
  2016年   1篇
  2015年   2篇
  2014年   4篇
  2013年   2篇
  2012年   5篇
  2011年   4篇
  2010年   6篇
  2009年   4篇
  2008年   5篇
  2007年   9篇
  2006年   8篇
  2005年   2篇
  2004年   5篇
  2003年   5篇
  2002年   4篇
  2001年   6篇
  2000年   4篇
  1999年   5篇
  1998年   5篇
  1997年   4篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1991年   6篇
  1990年   4篇
  1989年   11篇
  1988年   9篇
  1987年   1篇
  1986年   5篇
  1985年   6篇
  1984年   6篇
  1983年   4篇
  1982年   2篇
  1981年   1篇
  1980年   2篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1976年   7篇
  1974年   3篇
  1973年   5篇
  1972年   2篇
  1971年   1篇
  1970年   3篇
  1969年   1篇
  1968年   2篇
  1966年   2篇
排序方式: 共有190条查询结果,搜索用时 15 毫秒
81.
82.
Ca(2+)-activated Cl(-) channels (CaCCs) participate in numerous physiological functions such as neuronal excitability, sensory transduction, and transepithelial fluid transport. Recently, it was shown that heterologously expressed anoctamins ANO1 and ANO2 generate currents that resemble native CaCCs. The anoctamin family (also called Tmem16) consists of 10 members, but it is not known whether all members of the family are CaCCs. Expression of ANOs 3-7 in HEK293 cells did not generate Cl(-) currents activated by intracellular Ca(2+), as determined by whole cell patch clamp electrophysiology. With the use of confocal imaging, only ANO1 and ANO2 traffic to the plasma membrane when expressed heterologously. Furthermore, endogenously expressed ANO7 in the human prostate is predominantly intracellular. We took a chimeric approach to identify regions critical for channel trafficking and function. However, none of the chimeras of ANO1 and ANO5/7 that we made trafficked to the plasma membrane. Our results suggest that intracellular anoctamins may be endoplasmic reticulum proteins, although it remains unknown whether these family members are CaCCs. Determining the role of anoctamin family members in ion transport will be critical to understanding their functions in physiology and disease.  相似文献   
83.
Ascorbic acid and Mg-ATP were found to regulate norepinephrine biosynthesis in intact secretory vesicles synergistically and specifically, using the model system of isolated bovine chromaffin granules. Dopamine uptake into chromaffin granules was shown to be unrelated to the presence of Mg-ATP and ascorbic acid at external dopamine concentrations of 7.5 and 10 mM. Under these conditions of dopamine uptake, norepinephrine biosynthesis was enhanced 5-6-fold by Mg-ATP and ascorbic acid compared to control experiments with dopamine only. Furthermore, norepinephrine formation was enhanced approximately 3-fold by ascorbic acid and Mg-ATP together compared to norepinephrine formation in granules incubated with either substance alone. The action of Mg-ATP and ascorbic acid together was synergistic and independent of dopamine content of chromaffin granules as well as of dopamine uptake. The apparent Km of norepinephrine formation for external ascorbic acid was 376 microM and for external Mg-ATP was 132 microM, consistent with the larger amounts of cytosolic ascorbic acid and ATP that are available to chromaffin granules. Other physiologic reducing agents were not able to increase norepinephrine biosynthesis in the presence or absence of Mg-ATP. In addition, maximum enhancement of norepinephrine biosynthesis occurred only with the nucleotide ATP and the cation magnesium. The mechanism of the effect of ascorbic acid and Mg-ATP on norepinephrine biosynthesis was investigated and appeared to be independent of a positive membrane potential. The effect was also not mediated by direct action of ADP, ATP, or magnesium on the activity of soluble or particulate dopamine beta-monooxygenase. These data indicate that Mg-ATP and ascorbic acid specifically and synergistically co-regulate dopamine beta-monooxygenase activity in intact chromaffin granules, independent of substrate uptake. Although the mechanism is not known, the data are consistent with the possibility that the chromaffin granule ATPase mediates these effects.  相似文献   
84.
Regulation of fat cell number by apoptosis is proposed to be part of a normal physiological cycle in adipose growth and development. To investigate this process, cultured rat adipocytes were treated with various concentrations of tumor necrosis factor alpha (TNFalpha) and/or insulin to determine the roles of these factors in adipocyte apoptosis. The cells were analyzed by flow cytometry using a TUNEL assay. TNFalpha increased adipocyte apoptosis in a dose-dependent fashion. TNFalpha-mediated apoptosis was detectable within 6 h of treatment and continued to increase with time. Decreasing media insulin concentration from 8.5 to 0.85 nM resulted in increased adipocyte apoptosis, whereas high doses of insulin protected adipocytes from TNFalpha-induced apoptosis. TNFalpha-activated apoptosis was accompanied by an increase in caspase 3 activity and could be inhibited by a caspase 3-specific inhibitor. These data suggest that adipose tissue cell number is regulated, in part, by an apoptotic signaling pathway that involves TNFalpha, insulin, and caspase 3.  相似文献   
85.
86.
Myostatin, a new TGF-beta family member, is known as a muscle growth inhibitor, but its role in adipocyte development has not been studied. To test the role of Myostatin in 3T3-L1 preadipocyte differentiation, we treated cultured 3T3-L1 preadipocytes with Myostatin dissolved in 0.1% trifluoroacetic acid (TFA) during differentiation after they had become confluent. Myostatin treatment significantly decreased glycerol-3-phosphate dehydrogenase (GPDH) activity and oil Red-O staining compared to controls that did not receive Myostatin. Western blot analysis showed that the expression levels of CCAAT/enhancer binding protein alpha (C/EBP alpha) and peroxisome proliferator-activated receptor gamma (PPAR gamma) were significantly decreased by Myostatin treatment (P < 0.05). However, the expression of C/EBP beta was not significantly changed by the treatment (P > 0.05). From RT-PCR result, the relative level of leptin mRNA in Myostatin-treated cells was not significantly different (P > 0.1) from the level in cells without Myostatin treatment. Our data show that Myostatin, a secreted protein from muscle, inhibits preadipocyte differentiation in 3T3-L1 cells, which is mediated, in part, by altered regulation of C/EBP alpha and PPAR gamma.  相似文献   
87.
Youderian P  Hartzell PL 《Genetics》2007,177(1):557-566
The bacterium Myxococcus xanthus glides over surfaces using two different locomotive mechanisms, called S (social) and A (adventurous) motility that enable cells to move both as groups and as individuals. Neither mechanism involves flagella. The functions of these two motors are coordinated by the activity of a small Ras-like protein, encoded by the mglA gene. The results of previous studies of a second-site suppressor of the mglA-8 missense mutation masK-815 indicate that MglA interacts with a protein tyrosine kinase, MasK, to control social motility. Sequence analysis of the sites of 12 independent insertions of the transposon magellan-4 that result in the loss of motility in an M. xanthus mglA-8 masK-815 double mutant shows that nine of these 12 insertions are in genes known to be required for S gliding motility. This result confirms that the masK-815 suppressor restores S but not A motility. Three of the 12 insertions define three new genes required for S motility and show that the attachment of heptose to the lipopolysaccharide inner core, an ortholog of the CheR methyltransferase, and a large protein with YD repeat motifs, are required for S motility. When these three insertions are backcrossed into an otherwise wild-type genetic background, their recombinants are found to have defects in S, but not, A motility. The spectrum of magellan-4 insertions that lead to the loss of S motility in the mglA-8 masK-815 double mutant background is different than that resulting from a previous mutant hunt starting with a different (A mutant) genetic background, suggesting that the number of genes required for S motility in M. xanthus is quite large.  相似文献   
88.
The accumulation of fat cells (adipocytes) in bone marrow is now thought to be a factor contributing to age-related bone loss. Women with osteoporosis have higher numbers of marrow adipocytes than women with healthy bone, and bone formation rate is inversely correlated with adipocyte number in bone tissue biopsies from both men and women. Adipogenic differentiation of bone marrow stromal cells increases with age, but the factors regulating populations of mature adipocytes are not well understood. Leptin is thought to regulate adipose tissue mass via its receptors in the ventromedial hypothalamus (VMH). We have therefore tested the hypothesis that stimulation of leptin receptors in the VMH regulates adipocyte number in bone marrow. Results indicate that unilateral twice-daily injections of leptin into the rat VMH for only 4 or 5 days cause a significant reduction in the number of adipocytes in peripheral fat pads and bone marrow and indeed eliminate adipocytes almost entirely from bone marrow of the proximal tibia. Osteoblast surface is not affected with leptin treatment. Apoptosis assays performed on bone marrow samples from control and treated rats have revealed a significant increase in protein concentration of the apoptosis marker caspase-3 with leptin treatment. We conclude that stimulation of leptin receptors in the VMH significantly decreases the adipocyte population in bone marrow, primarily through apoptosis of marrow adipocytes. Elimination of marrow adipocytes via this central pathway may represent a useful strategy for the treatment and prevention of osteoporosis.  相似文献   
89.
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号