首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   140篇
  免费   32篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2017年   1篇
  2015年   10篇
  2014年   11篇
  2013年   9篇
  2012年   5篇
  2011年   10篇
  2010年   4篇
  2009年   3篇
  2008年   11篇
  2007年   8篇
  2006年   5篇
  2005年   8篇
  2004年   13篇
  2003年   9篇
  2002年   3篇
  2001年   3篇
  2000年   7篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1996年   4篇
  1995年   7篇
  1994年   3篇
  1992年   3篇
  1991年   3篇
  1990年   2篇
  1989年   3篇
  1988年   5篇
  1987年   1篇
  1984年   1篇
  1983年   2篇
  1980年   1篇
  1975年   2篇
  1970年   1篇
  1966年   1篇
  1953年   1篇
  1947年   1篇
排序方式: 共有172条查询结果,搜索用时 250 毫秒
21.
Streptococcus salivarius HB and four adhesion deficient mutants, HB-7, HB-V5, HB-V51 and HB-B, were grown in continuous culture in a defined medium under glucose limitation over a range of growth rates from 0.1 to 1.1 h-1. The ability to coaggregate with Veillonella parvula V1 cells and the ability to adhere to buccal epithelial cells did not alter with increasing growth rate. Cell surface hydrophobicity decreased markedly with increasing growth rate for the non-fibrillar non-adhesive mutant HB-B but not for the other four strains which all carry different combinations of fibril classes. The thickness of the ruthenium red staining layer (RRL) also varied with growth rate for strain HB-B, ranging from 19.5 +/- 3.8 nm at high growth rate to a minimum of 12.3 +/- 4.8 nm at low growth rate. Low cell surface hydrophobicity correlated with a thicker RRL for strain HB-B. Strains HB-V5 and HB-7 also showed a significant increase in RRL thickness at high growth rates although to a lesser degree than HB-B. SDS-PAGE revealed a large number of protein bands common to all strains at all growth rates, with the major common protein occurring at 15.6 kDa. Protein bands at 70, 56, 40.5 and 39 kDa appeared stronger at high growth rates than at low. A protein band at 82 kDa showed strongly only at low growth rates. Therefore, adhesion and coaggregation are not phenotypically variable with increasing growth rate but RRL thickness, hydrophobicity and cell surface proteins may be phenotypically variable depending on the strain.  相似文献   
22.
F D Manela  W S Dyer  J Ren  R F Harty 《Life sciences》1992,51(17):1363-1372
In the present study we developed an experimental model for direct assessment of antral endocrine cell and cholinergic neural responses to luminal stimulation. A sleeve of antral mucosal/submucosal tissue was prepared from rat antrum, mounted in perfusion chamber, and perfused in both luminal and submucosal compartments. Morphological and functional integrity of the antral sleeve were confirmed by histological examination and measurement of protein synthesis. Antral gastrin release was assessed in response to luminal stimulation with acid, peptone and distension. Luminal acid (pH3) inhibited basal gastrin release by -70.4% and luminal peptone stimulated gastrin release to 210% above control (p < 0.02). Distention of the antral sleeve by hydrostatic pressure (3-25cm H2O) caused stepwise and significant increase in gastrin release that was reversible. 3H-acetylcholine was stimulated significantly by KCl (56mM) to values twice control. In summary, these results establish the integrity and responsiveness of the antral sleeve to pharmacological and luminal stimulation. The antral sleeve may be a useful model in assessing antral function in response to luminal stimulation.  相似文献   
23.
CEP-1347, also known as KT7515, a derivative of a natural product indolocarbazole, inhibited motor neuronal death in vitro, inhibited activation of the stress-activated kinase JNK1 (c-jun NH terminal kinase) in cultured spinal motor neurons, but had no effect on the mitogen-activated protein kinase ERK1 in these cells. Results reported here profile the functional activity of CEP-1347/KT7515 in vivo in models of motor neuronal death or dedifferentiation. Application of CEP-1347/KT7515 to the chorioallantoic membrane of embryonic chicks rescued 40% of the lumbar motor neurons that normally die during the developmental period assessed. Peripheral administration of low doses (0.5 and 1 mg/kg daily) of CEP-1347/KT7515 reduced death of motor neurons of the spinal nucleus of the bulbocavernosus in postnatal female rats, with efficacy comparable to testosterone. Strikingly, daily administration of CEP-1347/KT7515 during the 4-day postnatal window of motor neuronal death resulted in persistent long-term motor neuronal survival in adult animals that received no additional CEP-1347/KT7515. In a model of adult motor neuronal dedifferentiation following axotomy, local application of CEP-1347/KT7515 to the transected hypoglossal nerve substantially reduced the loss of choline acetyl transferase immunoreactivity observed 7 days postaxotomy compared to untreated animals. Results from these experiments demonstrate that a small organic molecule that inhibits a signaling pathway associated with stress and injury also reduces neuronal death and degeneration in vivo. © 1998 John Wiley & Sons, Inc. J Neurobiol 35: 361–370, 1998  相似文献   
24.
The plant parasitic nematode Heterodera schachtii invades the roots of Arabidopsis thaliana to induce nematode feeding structures in the central cylinder. During nematode development, the parasites feed exclusively from these structures. Thus, high sugar import and specific sugar processing of the affected plant cells is crucial for nematode development. In the present work, we found starch accumulation in nematode feeding structures and therefore studied the expression genes involved in the starch metabolic pathway. The importance of starch synthesis was further shown using the Atss1 mutant line. As it is rather surprising to find starch accumulation in cells characterised by a high nutrient loss, we speculate that starch serves as long- and short-term carbohydrate storage to compensate the staggering feeding behaviour of the parasites.Key words: Heterodera schachtii, Arabidopsis, nematode, starch metabolism, syncytiaThe obligate plant parasitic nematode Heterodera schachtii is entirely dependent on a system of nutrient supply provided by the plant. Host plants—among those the model plant Arabidopsis thaliana—have to endure invasion of second stage juveniles and the establishment of nematode feeding structures in the plant''s vascular cylinder. For induction of the specific feeding structures, the juveniles pierce one single plant cell with their stylet and inject secretions, thus triggering the formation of a syncytium by local cell walls dissolutions.1 Further, the central vacuole of the syncytial cells disintegrates, nuclei enlarge and many organelles proliferate.1 About 24 hours after feeding site induction, the nematode juveniles start feeding in repetitive cycles.2 Syncytia have previously been described as strong sinks in the plant''s transport system.3 Thus, in the recent years several studies were carried out to discover solute supply to syncytial cells.47 To our present knowledge, syncytia are symplasmically isolated in the first days of nematode development. During that period, the nematodes depend on transport protein activity in the syncytia plasmamembranes. At later stages plasmodesmata appear to open to the phloem elements, facilitating symplasmic transport.Incoming solutes may either be taken up by the feeding nematode or are synthesised and catalysed by the syncytium''s metabolism. Due to the microscopically observable high density of the cytosol1 and the increased osmotic pressure,8 syncytia appear to accumulate high solute concentrations. In fact, significantly increased sucrose levels have been found in syncytia in comparison to non-infected control roots.7 In case of high sugar levels, plant cells generally synthesize starch in order to reduce emerging osmotic stress.9 The aim of the work of Hofmann et al.,10 was to elucidate if starch is utilised as carbohydrate storage in nematode-induced syncytia and to study expression of genes involved in starch metabolism with an emphasis on nematode development.Starch levels of nematode induced syncytia and roots of non-infected plants grown on sand/soil culture were measured by high performance liquid chromatography (HPLC). The results showed a high accumulation of starch in syncytia that was steadily decreasing during nematode development. The accumulation of starch could further be localised within syncytial cells by electron microscopy. Based on these results, we studied the gene expression of the starch metabolic pathway by Affymetrix gene chip analysis. About half of the 56 involved genes were significantly upregulated in syncytia compared to the control and only two genes were significantly downregulated. Thus, the high induction of the gene expression is consistent with the high starch accumulation. Finally, we applied an Arabidopsis mutant line lacking starch synthase I expression that has been described previously.11 Starch synthase I was the second highest upregulated gene in syncytia. It catalyses the linkage of ADP-glucose to the non-reducing end of an a-glucan, forming the linear glucose chains of amylopectin. In a nematode infection assay we were able to prove the significant importance of the gene for nematode development.With the presented results, we can unambiguously prove the accumulation of starch and the induction of the gene expression of the starch metabolic pathway in nematode-induced syncytia. The primary question however is: why do syncytia accumulate soluble sugars and starch although their metabolism is highly induced and nematodes withdraw solutes during continuously repeating feeding cycles?One explanation may be found where least expected—in nematode feeding. It is the feeding activity that induced solute import mechanisms into syncytia resulting in a newly formed sink tissue. However, during moulting events to the third, the fourth juvenile stage and to the adult stage nematodes interrupt feeding for about 20 hours.2 During this period sugar supply mechanisms will most probably not be altered thus leading to increasing levels of sugars in the syncytium. Starch may serve as short-term carbohydrate buffering sugar excess. Further, starch may serve as long-term carbohydrate storage during nematode development. In the early stages of juvenile development nematodes withdraw considerably small quantities (about 0,8-times the syncytium volume a day).12 At later stages, nutrient demand increases so that adult fertilised females require 4-times the syncytium volume per day in order to accomplish egg production.12 Thus, excessive sugar supply in the first days may be accumulated as starch that gets degraded at later stages when more energy is required from the parasites. Consequently, starch reserve serves as both short-term and long-term carbohydrate storage in nematode-induced syncytia in order to buffer changing feeding pattern of the parasites.? Open in a separate windowFigure 1Arabidopsis wild-type Columbia-0 plants were grown in sand/soil culture. Nematode-induced syncytia and non-infected control roots were harvested at 10, 15 and 20 days after inoculation (dai) and starch content was measured as glucose (Glc) equivalents. Values are means ± SE, n = 3. Different letters indicate significant variations (p < 0.05). © ASPBOpen in a separate windowFigure 2Transmission electron microscope picture of a cross-section of a syncytium associated with female fourth stage juvenile (H. schachtii) induced in roots of Arabidopsis. Bar = 2 µm. S, syncytium; Se, sieve tube; arrow, plastid; asterisk, starch granule. © ASPB  相似文献   
25.
Severe acute respiratory syndrome (SARS) is characterized by substantial acute pulmonary inflammation with a high mortality rate. Despite the identification of SARS coronavirus (SARS-CoV) as the etiologic agent of SARS, a thorough understanding of the underlying disease pathogenesis has been hampered by the lack of a suitable animal model that recapitulates the human disease. Intranasal (i.n.) infection of A/J mice with the CoV mouse hepatitis virus strain 1 (MHV-1) induces an acute respiratory disease with a high lethality rate that shares several pathological similarities with SARS-CoV infection in humans. In this study, we examined virus replication and the character of pulmonary inflammation induced by MHV-1 infection in susceptible (A/J, C3H/HeJ, and BALB/c) and resistant (C57BL/6) strains of mice. Virus replication and distribution did not correlate with the relative susceptibilities of A/J, BALB/c, C3H/HeJ, and C57BL/6 mice. In order to further define the role of the host genetic background in influencing susceptibility to MHV-1-induced disease, we examined 14 different inbred mouse strains. BALB.B and BALB/c mice exhibited MHV-1-induced weight loss, whereas all other strains of H-2b and H-2d mice did not show any signs of disease following MHV-1 infection. H-2k mice demonstrated moderate susceptibility, with C3H/HeJ mice exhibiting the most severe disease. C3H/HeJ mice harbor a natural mutation in the gene that encodes Toll-like receptor 4 (TLR4) that disrupts TLR4 signaling. C3H/HeJ mice exhibit enhanced morbidity and mortality following i.n. MHV-1 infection compared to wild-type C3H/HeN mice. Our results indicate that TLR4 plays an important role in respiratory CoV pathogenesis.Severe acute respiratory syndrome (SARS) is a disease that was initially observed in 2002 and led to approximately 8,000 affected individuals in multiple countries with over 700 deaths (1, 24, 47, 48). The causative agent of SARS was subsequently identified as a novel coronavirus (CoV) termed SARS-CoV (8, 17, 22, 27, 32, 37). Although SARS-CoV infections following the initial outbreak in 2002 and 2003 have been limited primarily to laboratory personnel, the identification of an animal reservoir for the virus raises concern about the potential for future outbreaks (25).The pathogenesis of SARS has been difficult to study, in part because no animal model is able to fully recapitulate the morbidity and mortality observed in infected humans (35). Infection of a number of inbred mouse strains, including BALB/c, C57BL/6, and 129S, with primary human isolates of SARS-CoV results in the replication of the virus within the lung tissue without the subsequent development of readily apparent clinical disease (11, 16, 41). Infection of aged BALB/c mice results in clinically apparent disease that more closely mimics some aspects of SARS in humans (36). However, immune responses in aged mice are known to be altered (5, 15), and thus, the mechanisms that control the induction of disease may differ between adult and aged mice. Recent work has demonstrated that serial passage of SARS-CoV in mice results in a mouse adaptation that leads to more profound replication of the virus in the lung (28, 34). However, the time to death from this mouse-adapted SARS-CoV is 3 to 5 days, which is much more rapid than the time to mortality observed in fatal cases of SARS in humans.Phylogenetic analysis has revealed that SARS-CoV is most closely related to group 2 CoVs, which include the mouse hepatitis virus (MHV) family (39). Thus, information gathered by infection of mice with closely related members of the group 2 CoVs may further contribute to our understanding of SARS-CoV pathogenesis in humans. While many strains of MHV induce primarily hepatic and central nervous system diseases (6, 7, 12, 18, 21, 23, 40), a recent study demonstrated that intranasal (i.n.) infection of A/J mice with MHV type 1 (MHV-1) induces pulmonary injury that shares several pathological characteristics with SARS-CoV infection of humans (2, 3, 9, 29, 43).In the current study, we examined the relationship between MHV-1 replication in the lungs and the severity of disease in four inbred strains of mice: A/J, BALB/c, C57BL/6, and C3H/HeJ. Our results demonstrate that MHV-1 replicates to similar levels in the lung in each of these inbred strains of mice regardless of their relative levels of susceptibility, as measured by weight loss and clinical illness. Both A/J and C3H/HeJ mice exhibited enhanced weight loss and clinical illness following i.n. MHV-1 infection compared to BALB/c and C57BL/6 mice. Analysis of many different inbred mouse strains confirmed A/J and C3H/HeJ mice as the most susceptible to i.n. MHV-1 infection. Interestingly, C3H/HeJ mice harboring a natural mutation in the gene that encodes Toll-like receptor 4 (TLR4) that disrupts its normal function exhibited greatly increased morbidity and mortality after i.n. MHV-1 infection compared to wild-type C3H/HeN mice. Our results indicate that TLR4 plays an important role in respiratory CoV pathogenesis.  相似文献   
26.

Introduction  

Improvement of rheumatoid arthritis (RA) during pregnancy has been causatively associated with increased galactosylation of immunoglobulin G (IgG) N-glycans. Since previous studies were small, did not include the postpartum flare and did not study sialylation, these issues were addressed in the present study.  相似文献   
27.
28.
Rocky Mountain spotted fever (RMSF) transmitted by the brown dog tick (Rhipicephalus sanguineus sensu lato) has emerged as a significant public health risk on American Indian reservations in eastern Arizona. During 2003–2012, more than 250 RMSF cases and 19 deaths were documented among Arizona''s American Indian population. The high case fatality rate makes community-level interventions aimed at rapid and sustained reduction of ticks urgent. Beginning in 2012, a two year pilot integrated tick prevention campaign called the RMSF Rodeo was launched in a ∼600-home tribal community with high rates of RMSF. During year one, long-acting tick collars were placed on all dogs in the community, environmental acaricides were applied to yards monthly, and animal care practices such as spay and neuter and proper tethering procedures were encouraged. Tick levels, indicated by visible inspection of dogs, tick traps and homeowner reports were used to monitor tick presence and evaluate the efficacy of interventions throughout the project. By the end of year one, <1% of dogs in the RMSF Rodeo community had visible tick infestations five months after the project was started, compared to 64% of dogs in Non-Rodeo communities, and environmental tick levels were reduced below detectable levels. The second year of the project focused on use of the long-acting collar alone and achieved sustained tick control with fewer than 3% of dogs in the RMSF Rodeo community with visible tick infestations by the end of the second year. Homeowner reports of tick activity in the domestic and peridomestic setting showed similar decreases in tick activity compared to the non-project communities. Expansion of this successful project to other areas with Rhipicephalus-transmitted RMSF has the potential to reduce brown dog tick infestations and save human lives.  相似文献   
29.
H.J. OAKEY, D.W.S. HARTY AND K.W. KNOX. 1995. Fifty-six strains of lactobacilli were examined for the production of glycosidases and proteases (arylamidases) that could be associated with the ability to grow in vivo and/or be a factor in the pathogenesis of endocarditis. The strains were from seven species, with an emphasis on Lactobacillus rhamnosus and Lact. paracasei subsp. paracasei , both of which have been associated with endocarditis and provided 12 of the 13 strains isolated from cases of the disease. Other species were Lact. acidophilus, Lact. plantarum, Lact. salivarius, Lact. fermentum and Lact. oris.
Commonly expressed glycosidase activities were α-D-galactosidase and β- N -acetyl-D-glucosaminidase followed by β-D-glucosidase and α-L-fucosidase. The combined production of β- N -acetyl-D-glucosaminidase and α-D-galactosidase was a feature of the endocarditis isolates. In contrast, β-D-galactosidase was produced by very few of the strains within species implicated in endocarditis but most of the strains of Lact. salivarius, Lact. fermentum and Lact. oris.
The most commonly produced arylamidases active against substrates employed for testing human blood clotting cascade were activated protein C(Ca)-like, activated factor X(Xa)-like and Hageman factor-like followed by kallikrein-like and chymotrypsin-like enzymes. Kallikrein-like enzyme activity was shown more frequently by strains from species commonly isolated from cases of endocarditis ( Lact. rhamnosus and Lact. paracasei subsp. paracasei ) than from other oral species ( Lact. plantarum, Lact. salivarius, Lact. fermentum and Lact. oris ).
The data indicate that some lactobacilli can produce enzymes that would enable the breakdown of human glycoproteins and the synthesis and lysis of human fibrin clots, characteristics which aid the colonization and survival of bacteria infecting an endocarditis vegetation.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号