首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   148篇
  免费   20篇
  2018年   2篇
  2016年   3篇
  2015年   4篇
  2014年   3篇
  2013年   3篇
  2012年   2篇
  2011年   3篇
  2010年   4篇
  2009年   2篇
  2008年   6篇
  2007年   8篇
  2005年   4篇
  2004年   7篇
  2003年   3篇
  2002年   2篇
  2001年   8篇
  2000年   6篇
  1999年   7篇
  1998年   3篇
  1997年   2篇
  1994年   2篇
  1993年   3篇
  1992年   2篇
  1991年   9篇
  1990年   4篇
  1989年   7篇
  1988年   2篇
  1987年   4篇
  1986年   6篇
  1985年   5篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1979年   2篇
  1978年   2篇
  1977年   2篇
  1976年   3篇
  1975年   2篇
  1974年   2篇
  1973年   1篇
  1972年   2篇
  1971年   1篇
  1970年   3篇
  1969年   3篇
  1968年   1篇
  1967年   5篇
  1966年   1篇
  1962年   1篇
排序方式: 共有168条查询结果,搜索用时 31 毫秒
131.
gamma-Aminobutyric acid type A (GABA(A)) receptors are members of the ligand-gated ion channel gene superfamily. Using the substituted cysteine accessibility method, we investigated whether residues in the alpha(1)M3 membrane-spanning segment are water-accessible. Cysteine was substituted, one at a time, for each M3 residue from alpha(1)Ala(291) to alpha(1)Val(307). The ability of these mutants to react with the water-soluble, sulfhydryl-specific reagent pCMBS(-) was assayed electrophysiologically. Cysteines substituted for alpha(1)Ala(291) and alpha(1)Tyr(294) reacted with pCMBS(-) applied both in the presence and in the absence of GABA. Cysteines substituted for alpha(1)Phe(298), alpha(1)Ala(300), alpha(1)Leu(301), and alpha(1)Glu(303) only reacted with pCMBS(-) applied in the presence of GABA. We infer that the pCMBS(-) reactive residues are on the water-accessible surface of the protein and that GABA induces a conformational change that increases the water accessibility of the four M3 residues, possibly by inducing the formation of water-filled crevices that extend into the interior of the protein. Others have shown that mutations of alpha(1)Ala(291), a water-accessible residue, alter volatile anesthetic and ethanol potentiation of GABA-induced currents. Water-filled crevices penetrating into the interior of the membrane-spanning domain may allow anesthetics and alcohol to reach their binding sites and thus may have implications for the mechanisms of action of these agents.  相似文献   
132.
133.
Actin crosslinked with glutaraldehyde retains the ability to activate the Mg2+-ATPase activity of heavy meromyosin subfragment 1, but the resultant ATPase activity is not controlled by the regulatory proteins, troponin and tropomyosin. Fluorescent energy transfer measurements imply that the crosslinked actin is frozen in the active state. These results indicate that the conformation of actin is important in the regulatory mechanism, and suggest that actin plays a more active role in this mechanism than thought previously.  相似文献   
134.
At relatively high concentrations of myosin light chain kinase, a second site on the 20,000-dalton light chain of smooth muscle myosin is phosphorylated (Ikebe, M., and Hartshorne, D. J. (1985) J. Biol. Chem. 260, 10027-10031). In this communication the site is identified and kinetics associated with its phosphorylation and dephosphorylation are described. The doubly phosphorylated 20,000-dalton light chain from turkey gizzard myosin was hydrolyzed with alpha-chymotrypsin and the phosphorylated peptide was isolated by reverse phase chromatography. Following amino acid analyses and partial sequence determinations the second site of phosphorylation is shown to be threonine 18. This site is distinct from the threonine residue phosphorylated by protein kinase C. The time courses of phosphorylation of serine 19 and threonine 18 in isolated light chains follow a single exponential indicating a random process, although the phosphorylation rates differ considerably. The values of kcat/Km for serine 19 and threonine 18 for isolated light chains are 550 and 0.2 min-1 microM-1, respectively. With intact myosin, phosphorylation of serine 19 is biphasic; kcat/Km values are 22.5 and 7.5 min-1 microM-1 for the fast and slow phases, respectively. In contrast, phosphorylation of threonine 18 in intact myosin is a random, but markedly slower process, kcat/Km = 0.44 min-1 microM-1. Dephosphorylation of doubly phosphorylated myosin (approximately 4 mol of phosphate/mol of myosin) and isolated light chains (approximately 2 mol of phosphate/mol of light chain) follows a random process and dephosphorylation of the serine 19 and threonine 18 sites occurs at similar rates.  相似文献   
135.
M Ikebe  D J Hartshorne 《Biochemistry》1986,25(20):6177-6185
It was shown previously [Ikebe, M., & Hartshorne, D. J. (1985) Biochemistry 24, 2380-2387] that the conformation of gizzard myosin, either 10S or 6S, influences proteolysis of myosin at two regions designated sites A and B. The studies reported here are focused on site A, which is located approximately 68,000 daltons from the N-terminus of the myosin heavy chain. With papain, Staphylococcus aureus protease, and actinidin, it is shown that the formation of 10S myosin reduces proteolysis at site A. Binding of actin to 6S myosin also hinders cleavage at site A for each of these proteases. To investigate binding of actin to 6S and 10S myosins, adenosine 5'-(beta,gamma-imidotriphosphate) (AMPPNP) is used as a substitute for ATP. In the presence of AMPPNP, it is shown that the 6S to 10S transition occurs and that 10S myosin binds actin with lower affinity than 6S myosin. For 6S myosin at high salt (0.35 M KCl) the dissociation constant of actin from the actin-myosin-nucleotide complex (K3) is approximately the same for phosphorylated (1.9 mol of P/mol of myosin) and dephosphorylated myosin, i.e., 1.3-2.4 microM, respectively. At lower ionic strength (0.17 M KCl) K3 for dephosphorylated myosin (10S myosin) is 42 microM and K3 for phosphorylated myosin (6S myosin) is 0.3 microM. These data show that the conformation of myosin influences the actin-myosin interaction. The constant (K4) for the dissociation of nucleotide from the actin-myosin-nucleotide complex varies slightly (in the range of 0.2-1.3 mM), but there is no marked change as a result of either a conformational change or phosphorylation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
136.
Studies on troponin   总被引:4,自引:0,他引:4  
  相似文献   
137.

Background  

The vast majority of oocytes formed in the fetal ovary do not survive beyond birth. Possible reasons for their loss include the elimination of non-viable genetic constitutions arising through meiosis, however, the precise relationship between meiotic stages and prenatal apoptosis of oocytes remains elusive. We studied oocytes in mouse fetal and neonatal ovaries, 14.5–21 days post coitum, to examine the relationship between oocyte development and programmed cell death during meiotic prophase I.  相似文献   
138.
在从成年人正常前列腺组织中获得人94个氨基酸的前列腺分泌蛋白(PSP94)cDNA基础上,利用PL表达系统,实现了人PSP94成熟肽N 末端带有19个外源氨基酸的融合蛋白在大肠杆菌中的表达。目的蛋白在细胞中主要以包涵体形式存在,表达量约占菌体总蛋白的30%,分子量约为16-5kD。表达产物在人前列腺癌细胞PC 3上活性分析表明,该融合蛋白能明显抑制前列腺癌细胞的生长。  相似文献   
139.
The influence of Ca2+ on the enzymatic and physical properties of smooth muscle myosin was studied. The actin-activated ATPase activity of phosphorylated gizzard myosin and heavy meromyosin is higher in the presence of Ca2+ than in its absence, but this effect is found only at lower MgCl2 concentrations. As the MgCl2 concentration is increased, Ca2+ sensitivity is decreased. The concentration of Ca2+ necessary to activate ATPase activity is higher than that required to saturate calmodulin. The similarity of the pCa dependence of ATPase activity and of Ca2+ binding to myosin and the competition by Mg2+ indicate that these effects involved the Ca2+-Mg2+ binding sites of gizzard myosin. For the actin dependence of ATPase activity of phosphorylated myosin at low concentrations of MgCl2, both Vmax and Ka are influenced by Ca2+. The formation of small polymers by phosphorylated myosin in the presence of Ca2+ could account for the alteration in the affinity for actin. For the actin dependence of phosphorylated heavy meromyosin at low MgCl2 concentrations, Ca2+ induces only an increase in Vmax. To detect alterations in physical properties, two techniques were used: viscosity and limited papain hydrolysis. For dephosphorylated myosin, 6 S or 10 S, Ca2+-dependent effects are not detected using either technique. However, for phosphorylated myosin the decrease in viscosity corresponding to the 6 S to 10 S transition is shifted to lower KCl concentrations by the presence of Ca2+. In addition, a Ca2+ dependence of proteolysis rates is observed with phosphorylated myosin but only at low ionic strength, i.e. under conditions where myosin assumes the folded conformation.  相似文献   
140.
M Ikebe  D J Hartshorne 《Biochemistry》1985,24(9):2380-2387
The proteolysis of gizzard myosin by Staphylococcus aureus protease produces both heavy meromyosin and subfragment 1 in which the 20 000-dalton light chains are intact, and conditions are suggested for the preparation of each. Cleavage of the myosin heavy chain to produce subfragment 1 is dependent on the myosin conformation. Proteolysis of myosin in the 10S conformation yields predominantly heavy meromyosin, and myosin in the 6S conformation yields mostly subfragment 1 and some heavy meromyosin. Two sites are influenced by myosin conformation, and these are located at approximately 68 000 and 94 000 daltons from the N-terminus of the myosin heavy chain. The latter site is thought to be located at the subfragment 1-subfragment 2 junction, and cleavage at this site results in the production of subfragment 1. The time courses of phosphorylation of both heavy meromyosin and subfragment 1 can be fit by a single exponential. The actin-activated Mg2+-ATPase activity of heavy meromyosin is markedly activated by phosphorylation of the 20 000-dalton light chains. From the actin dependence of Mg2+-ATPase activity the following values are obtained: for phosphorylated heavy meromyosin, Vmax approximately 5.6 s-1 and Ka (the apparent dissociation constant for actin) approximately 2 mg/mL; for dephosphorylated heavy meromyosin, Vmax approximately 0.2 s-1 and Ka approximately 7 mg/mL. The actin-activated ATPase activity of subfragment 1 is not influenced by phosphorylation, and Vmax and Ka for both the phosphorylated and dephosphorylated forms are 0.4 s-1 and 5 mg/mL, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号