首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3920篇
  免费   322篇
  2022年   32篇
  2021年   71篇
  2020年   44篇
  2019年   57篇
  2018年   68篇
  2017年   50篇
  2016年   97篇
  2015年   160篇
  2014年   173篇
  2013年   199篇
  2012年   246篇
  2011年   240篇
  2010年   143篇
  2009年   134篇
  2008年   198篇
  2007年   206篇
  2006年   185篇
  2005年   169篇
  2004年   145篇
  2003年   151篇
  2002年   126篇
  2001年   98篇
  2000年   82篇
  1999年   74篇
  1998年   53篇
  1997年   42篇
  1996年   40篇
  1995年   26篇
  1994年   29篇
  1993年   25篇
  1992年   60篇
  1991年   35篇
  1990年   38篇
  1989年   51篇
  1988年   41篇
  1987年   35篇
  1986年   38篇
  1985年   38篇
  1984年   37篇
  1983年   20篇
  1982年   30篇
  1981年   31篇
  1980年   19篇
  1979年   37篇
  1978年   23篇
  1977年   26篇
  1976年   19篇
  1974年   26篇
  1972年   25篇
  1970年   23篇
排序方式: 共有4242条查询结果,搜索用时 625 毫秒
961.

Background

Viruses can evade immune surveillance, but the underlying mechanisms are insufficiently understood. Here, we sought to understand the mechanisms by which natural killer (NK) cells recognize HIV-1-infected cells and how this virus can evade NK-cell-mediated immune pressure.

Methods and Findings

Two sequence mutations in p24 Gag associated with the presence of specific KIR/HLA combined genotypes were identified in HIV-1 clade C viruses from a large cohort of infected, untreated individuals in South Africa (n = 392), suggesting viral escape from KIR+ NK cells through sequence variations within HLA class I—presented epitopes. One sequence polymorphism at position 303 of p24 Gag (TGag303V), selected for in infected individuals with both KIR2DL3 and HLA-C*03:04, enabled significantly better binding of the inhibitory KIR2DL3 receptor to HLA-C*03:04-expressing cells presenting this variant epitope compared to the wild-type epitope (wild-type mean 18.01 ± 10.45 standard deviation [SD] and variant mean 44.67 ± 14.42 SD, p = 0.002). Furthermore, activation of primary KIR2DL3+ NK cells from healthy donors in response to HLA-C*03:04+ target cells presenting the variant epitope was significantly reduced in comparison to cells presenting the wild-type sequence (wild-type mean 0.78 ± 0.07 standard error of the mean [SEM] and variant mean 0.63 ± 0.07 SEM, p = 0.012). Structural modeling and surface plasmon resonance of KIR/peptide/HLA interactions in the context of the different viral sequence variants studied supported these results. Future studies will be needed to assess processing and antigen presentation of the investigated HIV-1 epitope in natural infection, and the consequences for viral control.

Conclusions

These data provide novel insights into how viruses can evade NK cell immunity through the selection of mutations in HLA-presented epitopes that enhance binding to inhibitory NK cell receptors. Better understanding of the mechanisms by which HIV-1 evades NK-cell-mediated immune pressure and the functional validation of a structural modeling approach will facilitate the development of novel targeted immune interventions to harness the antiviral activities of NK cells.  相似文献   
962.
The central questions in understanding signaling pathway specificity are how these pathways encode which stimulus is present and how this stimulus is decoded to yield the correct cell fate decision. In their recent work, Ryu et al (2015) show by stimulation experiments with different ligands how the differential engagement of feedback and feed‐forward regulation leads to different dynamics of pathway activity, which in turn alters cell fate. Moreover, they show that by considering the timescales of the feedback regulations, the different cellular responses can be triggered with pulsed stimulations by a single ligand.  相似文献   
963.
Piwi-like 2 (Piwil 2) belongs to the family of Argonaute genes/proteins. The expression of Piwil 2 is associated with stem cells. A role in tumorigenesis and/or tumor progression is proposed for different cancers but not yet for bladder cancer (BCa). We investigated Piwil 2 expression by immunohistochemistry in a cohort of 202 BCa patients treated by cystectomy and adjuvant chemotherapy. The association between Piwil 2 expression and disease-specific (DSS) or progression-free survival (PFS) was calculated using Kaplan-Meier analyses and univariate/multivariate Cox regression hazard models. In a multivariate Cox regression analysis, Piwil 2 expression, either in the cytoplasm or the nucleus, was significantly associated with DSS and PFS. A weak cytoplasmic staining pattern was associated with poor DSS and tumor progression (relative risk [RR] = 2.7, P = 0.004, and RR = 2.4, P = 0.027). Likewise, absent nuclear Piwil 2 immunoreactivity was associated with poor DSS and tumor progression (RR = 2.3, P = 0.023, and RR = 2.2, P = 0.022). BCa patients whose tumors exhibited a combination of weak cytoplasmic and absent nuclear immunoreactivity had a 6-fold increased risk of tumor-related death (P = 0.005) compared with patients with strong expression. Considering only patients with high-grade G3 tumors, a 7.8-fold risk of tumor-associated death and a 3.6-fold risk of tumor progression were detected independently of the histologic tumor subtype or the chemotherapy regimen. In summary, a combination of weak cytoplasmic and absent nuclear expression of Piwil 2 is significantly associated with an increased risk of DSS and tumor progression. This indicates that Piwil 2 could be a valuable prognostic marker for high-risk BCa patients.  相似文献   
964.
965.
LiCoO2 electrodes contain three phases, or domains, each having specific‐intended functions: ion‐conducting pore space, lithium‐ion‐reacting active material, and electron conducting carbon‐binder domain (CBD). Transport processes take place in all domains on different characteristic length scales: from the micrometer scale in the active material grains through to the nanopores in the carbon‐binder phase. Consequently, more than one imaging approach must be utilized to obtain a hierarchical geometric representation of the electrode. An approach incorporating information from the micro‐ and nanoscale to calculate 3D transport‐relevant properties in a large‐reconstructed active domain is presented. Advantages of focused ion beam/scanning electron microscopy imaging and X‐ray tomography combined by a spatial stochastic model, validated with an artificially produced reference structure are used. This novel approach leads to significantly different transport relevant properties compared with previous tomographic approaches: nanoporosity of the CBD leads to up to 42% additional contact area between active material and pore space and increases ionic conduction by a factor of up to 3.6. The results show that nanoporosity within the CBD cannot be neglected.  相似文献   
966.
Although neural c-Jun is essential for successful peripheral nerve regeneration, the cellular basis of this effect and the impact of c-Jun activation are incompletely understood. In the current study, we explored the effects of neuron-selective c-Jun deletion, substitution of serine 63 and 73 phosphoacceptor sites with non-phosphorylatable alanine, and deletion of Jun N-terminal kinases 1, 2 and 3 in mouse facial nerve regeneration. Removal of the floxed c-jun gene in facial motoneurons using cre recombinase under control of a neuron-specific synapsin promoter (junΔS) abolished basal and injury-induced neuronal c-Jun immunoreactivity, as well as most of the molecular responses following facial axotomy. Absence of neuronal Jun reduced the speed of axonal regeneration following crush, and prevented most cut axons from reconnecting to their target, significantly reducing functional recovery. Despite blocking cell death, this was associated with a large number of shrunken neurons. Finally, junΔS mutants also had diminished astrocyte and microglial activation and T-cell influx, suggesting that these non-neuronal responses depend on the release of Jun-dependent signals from neighboring injured motoneurons. The effects of substituting serine 63 and 73 phosphoacceptor sites (junAA), or of global deletion of individual kinases responsible for N-terminal c-Jun phosphorylation were mild. junAA mutants showed decrease in neuronal cell size, a moderate reduction in post-axotomy CD44 levels and slightly increased astrogliosis. Deletion of Jun N-terminal kinase (JNK)1 or JNK3 showed delayed functional recovery; deletion of JNK3 also interfered with T-cell influx, and reduced CD44 levels. Deletion of JNK2 had no effect. Thus, neuronal c-Jun is needed in regeneration, but JNK phosphorylation of the N-terminus mostly appears to not be required for its function.  相似文献   
967.
Since the late 1960s, American woodcock (Scolopax minor) have undergone population declines because of habitat loss. Previous research suggested ridge and furrow topography in conventionally tilled soybean fields provided critical nocturnal cover as birds foraged on earthworms. However, the use of no-till technology has increased and many fields now lack ridge and furrow topography. We assessed woodcock winter nocturnal foraging habitat use given recent changes in agricultural technology, and investigated how field treatment, earthworm abundance, and environmental variables affect the selection of nocturnal foraging sites. We counted woodcock along transects in 5 field treatments twice in each of 67 fields during December–March 2008–2009 and 72 fields during December–March 2009–2010. During both seasons, we collected earthworm and soil samples from a subset of fields of each field treatment. Woodcock densities were at least twice as high in no-till soybean fields planted after corn and in undisked corn fields with mowed stalks than in other field treatments. No-till soybean planted after corn and undisked corn fields contained ridge and furrow topography, whereas other crops did not, and earthworms were at least 1.5 times more abundant in no-till soybean fields than other field treatments. Ridges and furrows in no-till soybean fields planted after corn and undisked corn fields may provide wintering woodcock with thermal protection and concealment from predators. No-till soybean fields planted after corn offered the additional benefit of relatively high food availability. The presence of ridge and furrow topography can be used to predict woodcock field use on the wintering grounds in agricultural areas. Farmers can provide nocturnal winter foraging sites for woodcock by delaying field disking and leaving ridge and furrow topography in crop fields. © 2011 The Wildlife Society.  相似文献   
968.
969.
The luminal composition of the auditory tube influences its function. The mechanisms involved in the monitoring are currently not known. For the lower respiratory epithelium, such a sentinel role is carried out by cholinergic brush cells. Here, using two different mouse strains expressing eGFP under the control of the promoter of choline acetyltransferase (ChAT), we show the presence of solitary cholinergic villin-positive brush cells also in the mouse auditory tube epithelium. They express the vesicular acetylcholine (ACh) transporter and proteins of the taste transduction pathway such as α-gustducin, phospholipase C beta 2 (PLC(β2)) and transient receptor potential cation channel subfamily M member 5 (TRPM5). Immunoreactivity for TRPM5 and PLCβ2 was found regularly, whereas α-gustducin was absent in approximately 15% of the brush cells. Messenger RNA for the umami taste receptors (TasR), Tas1R1 and 3, and for the bitter receptors, Tas2R105 and Tas2R108, involved in perception of cycloheximide and denatonium were detected in the auditory tube. Using a transgenic mouse that expresses eGFP under the promotor of the nicotinic ACh receptor α3-subunit, we identified cholinoceptive nerve fibers that establish direct contacts to brush cells in the auditory tube. A subpopulation of these fibers displayed also CGRP immunoreactivity. Collectively, we show for the first time the presence of brush cells in the auditory tube. These cells are equipped with all proteins essential for sensing the composition of the luminal microenvironment and for communication of the changes to the CNS via attached sensory nerve fibers.  相似文献   
970.
The effect of pressure on the kinetics and thermodynamics of the reversible binding of camphor to cytochrome P450cam was studied as a function of the K+ concentration. The determination of the reaction and activation volumes enabled the construction of the first complete volume profile for the reversible binding of camphor to P450cam. Although the volume profiles constructed for the reactions conducted at low and high K+ concentrations are rather similar, and both show a drastic volume increase on going from the reactant to the transition state and a relatively small volume change on going from the transition to the product state, the position of the transition state is largely affected by the K+ concentration in solution. Similarly, the activation volume determined for the dissociation of camphor is influenced by the presence of K+, which reflects changes in the ease of water entering the active site of camphor-bound P450cam that depends on the K+ concentration. Careful analysis of the components that contribute to the observed volume changes allowed the estimation of the total number of water molecules expelled to the bulk solvent during the binding of camphor to P450cam and the subsequent spin transition. The results are discussed in reference to other studies reported in the literature that deal with the kinetics and thermodynamics of the binding of camphor to P450cam under various reaction conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号