首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2061篇
  免费   196篇
  2257篇
  2021年   31篇
  2020年   19篇
  2019年   23篇
  2018年   30篇
  2017年   20篇
  2016年   42篇
  2015年   70篇
  2014年   73篇
  2013年   84篇
  2012年   113篇
  2011年   109篇
  2010年   69篇
  2009年   52篇
  2008年   87篇
  2007年   98篇
  2006年   90篇
  2005年   81篇
  2004年   69篇
  2003年   74篇
  2002年   53篇
  2001年   72篇
  2000年   65篇
  1999年   51篇
  1998年   30篇
  1997年   29篇
  1996年   31篇
  1995年   17篇
  1994年   15篇
  1992年   44篇
  1991年   33篇
  1990年   23篇
  1989年   37篇
  1988年   32篇
  1987年   31篇
  1986年   31篇
  1985年   24篇
  1984年   21篇
  1983年   18篇
  1982年   24篇
  1981年   24篇
  1980年   14篇
  1979年   31篇
  1978年   14篇
  1977年   16篇
  1976年   14篇
  1974年   25篇
  1973年   16篇
  1972年   21篇
  1970年   17篇
  1967年   14篇
排序方式: 共有2257条查询结果,搜索用时 15 毫秒
991.

Background  

The non-pathogenic ciliate Tetrahymena thermophila is one of the best-characterized unicellular eucaryotes used in various research fields. Previous work has shown that this unicellular organism provides many biological features to become a high-quality expression system, like multiplying to high cell densities with short generation times in bioreactors. In addition, the expression of surface antigens from the malaria parasite Plasmodium falciparum and the ciliate Ichthyophthirius multifiliis suggests that T. thermophila might play an important role in vaccine development. However, the expression of functional mammalian or human enzymes remains so far to be seen.  相似文献   
992.
The efficient preparation of recombinant proteins at the lab-scale level is essential for drug discovery, in particular for structural biology, protein interaction studies and drug screening. The Baculovirus insect-cell expression system is one of the most widely applied and highly successful systems for production of recombinant functional proteins. However, the use of eukaryotic cells as host organisms and the multi-step protocol required for the generation of sufficient virus and protein has limited its adaptation to industrialized high-throughput operation. We have developed an integrated large-scale process for continuous and partially automated protein production in the Baculovirus system. The instrumental platform includes parallel insect-cell fermentation in 10L BioWave reactors, cell harvesting and lysis by tangential flow filtration (TFF) using two custom-made filtration units and automated purification by multi-dimensional chromatography. The use of disposable materials (bags, filters and tubing), automated cleaning cycles and column regeneration, prevent any cross-contamination between runs. The preparation of the clear cell lysate by sequential TFF takes less than 2 h and represents considerable time saving compared to standard cell harvesting and lysis by sonication and ultra-centrifugation. The process has been validated with 41 His-tagged proteins with molecular weights ranging from 20 to 160 kDa. These proteins represented several families, and included 23 members of the deubiquitinating enzyme (DUB) family. Each down-stream unit can process four proteins in less than 24 h with final yields between 1 and 100 mg, and purities between 50 and 95%.  相似文献   
993.
The Noah's Ark Problem (NAP) is a comprehensive cost-effectiveness methodology for biodiversity conservation that was introduced by Weitzman (1998) and utilizes the phylogenetic tree containing the taxa of interest to assess biodiversity. Given a set of taxa, each of which has a particular survival probability that can be increased at some cost, the NAP seeks to allocate limited funds to conserving these taxa so that the future expected biodiversity is maximized. Finding optimal solutions using this framework is a computationally difficult problem to which a simple and efficient "greedy" algorithm has been proposed in the literature and applied to conservation problems. We show that, although algorithms of this type cannot produce optimal solutions for the general NAP, there are two restricted scenarios of the NAP for which a greedy algorithm is guaranteed to produce optimal solutions. The first scenario requires the taxa to have equal conservation cost; the second scenario requires an ultrametric tree. The NAP assumes a linear relationship between the funding allocated to conservation of a taxon and the increased survival probability of that taxon. This relationship is briefly investigated and one variation is suggested that can also be solved using a greedy algorithm.  相似文献   
994.
995.
996.
Frölich C  Hartmann T  Ober D 《Phytochemistry》2006,67(14):1493-1502
Phalaenopsis hybrids contain two 1,2-saturated pyrrolizidine monoesters, T-phalaenopsine (necine base trachelanthamidine) and its stereoisomer Is-phalaenopsine (necine base isoretronecanol). T-Phalaenopsine is the major alkaloid accounting for more than 90% of total alkaloid. About equal amounts of alkaloid were genuinely present as free base and its N-oxide. The structures were confirmed by GC-MS. The quantitative distribution of phalaenopsine in various organs and tissues of vegetative rosette plants and flowering plants revealed alkaloid in all tissues. The highest concentrations were found in young and developing tissues (e.g., root tips and young leaves), peripheral tissues (e.g., of flower stalks) and reproductive organs (flower buds and flowers). Within flowers, parts that usually attract insect visitors (e.g., labellum with colorful crests as well as column and pollinia) show the highest alkaloid levels. Tracer feeding experiments with (14)C-labeled putrecine revealed that in rosette plants the aerial roots were the sites of phalaenopsine biosynthesis. However active biosynthesis was only observed in roots still attached to the plant but not in excised roots. There is a slow but substantial translocation of newly synthesized alkaloid from the roots to other plant organs. A long-term tracer experiment revealed that phalaenopsine shows neither turnover nor degradation. The results are discussed in the context of a polyphyletic molecular origin of the biosynthetic pathways of pyrrolizidine alkaloids in various scattered angiosperm taxa. The ecological role of the so called non-toxic 1,2-saturated pyrrolizidine alkaloids is discussed in comparison to the pro-toxic 1,2-unsaturated pyrrolizidine alkaloids. Evidence from the plant-insect interphase is presented indicating a substantial role of the 1,2-saturated alkaloids in plant and insect defense.  相似文献   
997.
Members of the genus Cronobacter are opportunistic pathogens for neonates and are often associated with contaminated milk powder formulas. At present little is known about the virulence mechanisms or the natural reservoir of these organisms. The proteome of Cronobacter turicensis 3032, which has recently caused two deaths, was mapped aiming at a better understanding of physiology and putative pathogenic traits of this clinical isolate. Our analyses of extracellular, surface‐associated and whole‐cell proteins by two complementary proteomics approaches, 1D‐SDS‐PAGE combined with LC‐ESI‐MS/MS and 2D‐LC‐MALDI‐TOF/TOF MS, lead to the identification of 832 proteins corresponding to a remarkable 19% of the theoretically expressed protein complement of C. turicensis. The majority of the identified proteins are involved in central metabolic pathways, translation, protein folding and stability. Several putative virulence factors, whose expressions were confirmed by phenotypic assays, could be identified: a macrophage infectivity potentiator involved in C. turicensis persistence in host cells, a superoxide dismutase protecting the pathogen against reactive oxygen species and an enterobactin‐receptor protein for the uptake of siderophore‐bound iron. Most interestingly, a chitinase and a metalloprotease that might act against insects and fungi but no casein hydrolysing enzymes were found, suggesting that there is an environmental natural habitat of C. turicensis 3032.  相似文献   
998.
Biosurfactants have been the subject of recent interest as sustainable alternatives to petroleum-derived compounds in areas ranging from soil remediation to personal and health care. The production of naturally occurring biosurfactants depends on the presence of complex feed sources during microbial growth and requires multicomponent enzymes for synthesis within the cells. Conversely, designed peptide surfactants can be produced recombinantly in microbial systems, enabling the generation of improved variants by simple genetic manipulation. However, inefficient downstream processing is still an obstacle for the biological production of small peptides. We present the production of the peptide biosurfactant GAM1 in recombinant E. coli. Expression was performed in fusion to maltose binding protein using chemically defined minimal medium, followed by a single-step affinity capture and enzymatic cleavage using tobacco etch virus protease. Different approaches to the isolation of peptide after cleavage were investigated, with special emphasis on rapid and simple procedures. Solvent-, acid-, and heat-mediated precipitation of impurities were successfully applied as alternatives to post-cleavage chromatographic peptide purification, and gave peptide purities exceeding 90%. Acid precipitation was the method of choice, due to its simplicity and the high purification factor and recovery rate achieved here. The functionality of the bio-produced peptide was tested to ensure that the resulting peptide biosurfactant was both surface active and able to be triggered to switch between foam-stabilizing and foam-destabilizing states.  相似文献   
999.
Most lysosomal storage diseases are caused by defects in genes encoding for acidic hydrolases. Deficiency of an enzyme involved in the catabolic pathway of N-linked glycans leads to the accumulation of the respective substrate and consequently to the onset of a specific storage disorder. Di-N-acetylchitobiase and core specific α1-6mannosidase represent the only exception. In fact, to date no lysosomal disease has been correlated to the deficiency of these enzymes. We generated di-N-acetylchitobiase-deficient mice by gene targeting of the Ctbs gene in murine embryonic stem cells. Accumulation of Man2GlcNAc2 and Man3GlcNAc2 was evaluated in all analyzed tissues and the tetrasaccharide was detected in urines. Multilamellar inclusion bodies reminiscent of polar lipids were present in epithelia of a scattered subset of proximal tubules in the kidney. Less constantly, enlarged Kupffer cells were observed in liver, filled with phagocytic material resembling partly digested red blood cells. These findings confirm an important role for lysosomal di-N-acetylchitobiase in glycans degradation and suggest that its deficiency could be the cause of a not yet described lysosomal storage disease.  相似文献   
1000.
For B-DNA, the strong linear correlation observed by nuclear magnetic resonance (NMR) between the 31P chemical shifts (δP) and three recurrent internucleotide distances demonstrates the tight coupling between phosphate motions and helicoidal parameters. It allows to translate δP into distance restraints directly exploitable in structural refinement. It even provides a new method for refining DNA oligomers with restraints exclusively inferred from δP. Combined with molecular dynamics in explicit solvent, these restraints lead to a structural and dynamical view of the DNA as detailed as that obtained with conventional and more extensive restraints. Tests with the Jun-Fos oligomer show that this δP-based strategy can provide a simple and straightforward method to capture DNA properties in solution, from routine NMR experiments on unlabeled samples.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号