首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2853篇
  免费   253篇
  3106篇
  2022年   17篇
  2021年   40篇
  2020年   25篇
  2019年   29篇
  2018年   39篇
  2017年   35篇
  2016年   70篇
  2015年   99篇
  2014年   132篇
  2013年   145篇
  2012年   185篇
  2011年   192篇
  2010年   116篇
  2009年   94篇
  2008年   143篇
  2007年   147篇
  2006年   130篇
  2005年   126篇
  2004年   97篇
  2003年   117篇
  2002年   90篇
  2001年   79篇
  2000年   69篇
  1999年   63篇
  1998年   36篇
  1997年   35篇
  1996年   39篇
  1995年   18篇
  1994年   16篇
  1993年   15篇
  1992年   44篇
  1991年   33篇
  1990年   26篇
  1989年   38篇
  1988年   33篇
  1987年   32篇
  1986年   30篇
  1985年   24篇
  1984年   24篇
  1983年   19篇
  1982年   27篇
  1981年   30篇
  1979年   33篇
  1978年   15篇
  1977年   16篇
  1976年   16篇
  1974年   25篇
  1973年   16篇
  1972年   21篇
  1970年   17篇
排序方式: 共有3106条查询结果,搜索用时 15 毫秒
81.
The use of rosemary essential oil (RO) and its combination with nisin (RO+N) in preventing the multiplication of Alicyclobacillus acidoterrestris in orange juice was evaluated. The minimum inhibitory and bactericidal concentrations (MIC and MBC) for RO were both 125 μg ml−1 while RO+N displayed a synergistic effect. The use of RO and RO+N at concentrations of 1, 4 and 8× MIC in orange juice for 96 h was evaluated in terms of their sporicidal effectiveness. With regard to the action against A. acidoterrestris spores, RO at 8× MIC was sporostatic, whereas RO+N at 1× MIC was sporicidal. Morphological changes in the structure of the micro-organism after treatment were also observed by microscopy. Furthermore, flow cytometric analysis showed that most cells were damaged or killed after treatment. In general, the antioxidant activity after addition of RO+N decreased with time. The results demonstrate that using the combination of RO and nisin can prevent the A. acidoterrestris growth in orange juice.  相似文献   
82.
The integral membrane protein Apq12 is an important nuclear envelope (NE)/endoplasmic reticulum (ER) modulator that cooperates with the nuclear pore complex (NPC) biogenesis factors Brl1 and Brr6. How Apq12 executes these functions is unknown. Here, we identified a short amphipathic α-helix (AαH) in Apq12 that links the two transmembrane domains in the perinuclear space and has liposome-binding properties. Cells expressing an APQ12 (apq12-ah) version in which AαH is disrupted show NPC biogenesis and NE integrity defects, without impacting Apq12-ah topology or NE/ER localization. Overexpression of APQ12 but not apq12-ah triggers striking over-proliferation of the outer nuclear membrane (ONM)/ER and promotes accumulation of phosphatidic acid (PA) at the NE. Apq12 and Apq12-ah both associate with NPC biogenesis intermediates and removal of AαH increases both Brl1 levels and the interaction between Brl1 and Brr6. We conclude that the short amphipathic α-helix of Apq12 regulates the function of Brl1 and Brr6 and promotes PA accumulation at the NE possibly during NPC biogenesis.  相似文献   
83.
Natural killer (NK) cells are important effectors in resistance to viral infections. The role of NK cells in the acute response to human immunodeficiency virus 1 (HIV-1) infected cells was investigated in a mouse model based on a HIV-1/murine leukemia virus (MuLV) pseudovirus. Splenocytes infected with HIV-1/MuLV were injected intraperitoneally and local immunologic responses and persistence of infected cells were investigated. In vivo depletion with an anti-NK1.1 antibody showed that NK cells are important in resistance to virus infected cells. Moreover, NK cell frequency in the peritoneal cavity increased in response to infected cells and these NK cells had a more mature phenotype, as determined by CD27 and Mac-1 expression. Interestingly, after injection of HIV-1/MuLV infected cells, but not MuLV infected cells, peritoneal NK cells had an increased cytotoxic activity. In conclusion, NK cells play a role in the early control of HIV-1/MuLV infected cells in vivo.  相似文献   
84.
In a previous work, we presented evidence for the presence of a protein encoded by At5g50600 in oil bodies (OBs) from Arabidopsis thaliana [P. Jolivet, E. Roux, S. D'Andrea, M. Davanture, L. Negroni, M. Zivy, T. Chardot, Protein composition of oil bodies in Arabidopsis thaliana ecotype WS, Plant Physiol. Biochem. 42 (2004) 501-509]. Using specific antibodies and proteomic techniques, we presently confirm the existence of this protein, which is a member of the short-chain steroid dehydrogenase reductase superfamily. We have measured its activity toward various steroids (cholesterol, dehydroepiandrosterone, cortisol, corticosterone, estradiol, estrone) and NAD(P)(H), either within purified OBs or as a purified bacterially expressed chimera. Both enzymatic systems (OBs purified from A. thaliana seeds as well as the chimeric enzyme) exhibited hydroxysteroid dehydrogenase (HSD) activity toward estradiol (17beta-hydroxysteroid) with NAD+ or NADP+, NADP+ being the preferred cofactor. Low levels of activity were observed with cortisol or corticosterone (11beta-hydroxysteroids), but neither cholesterol nor DHEA (3beta-hydroxysteroids) were substrates, whatever the cofactor used. Similar activity profiles were found for both enzyme sources. Purified OBs were found to be also able to catalyze estrone reduction (17beta-ketosteroid reductase activity) with NADPH. The enzyme occurring in A. thaliana OBs can be classified as a NADP+-dependent 11beta-,17beta-hydroxysteroid dehydrogenase/17beta-ketosteroid reductase. This enzyme probably corresponds to AtHSD1, which is encoded by At5g50600. However, its physiological role and substrates still remain to be determined.  相似文献   
85.
Intracellular release of calcium ions belongs to the earliest events in cellular stress perception. The molecular mechanisms integrating signals from different environmental cues and translating them into an optimized response are largely unknown. We report here the functional characterization of CIPK1, a protein kinase interacting strongly with the calcium sensors CBL1 and CBL9. Comparison of the expression patterns indicates that the three proteins execute their functions in the same tissues. Physical interaction of CIPK1 with CBL1 and CBL9 targets the kinase to the plasma membrane. We show that, similarly to loss of CBL9 function, mutation of either CBL1 or CIPK1 renders plants hypersensitive to osmotic stress. Remarkably, in contrast to the cbl1 mutant and similarly to the cbl9 mutant, loss of CIPK1 function impairs abscisic acid (ABA) responsiveness. We therefore suggest that, by alternative complex formation with either CBL1 or CBL9, the kinase CIPK1 represents a convergence point for ABA-dependent and ABA-independent stress responses. Based on our genetic, physiological and protein-protein interaction data, we propose a general model for information processing in calcium-regulated signalling networks.  相似文献   
86.
Variability in xylem anatomy is of interest to plant scientists because of the role water transport plays in plant performance and survival. Insights into plant adjustments to changing environmental conditions have mainly been obtained through structural and functional comparative studies between taxa or within taxa on contrasting sites or along environmental gradients. Yet, a gap exists regarding the study of hydraulic adjustments in response to environmental changes over the lifetimes of plants. In trees, dated tree-ring series are often exploited to reconstruct dynamics in ecological conditions, and recent work in which wood-anatomical variables have been used in dendrochronology has produced promising results. Environmental signals identified in water-conducting cells carry novel information reflecting changes in regional conditions and are mostly related to short, sub-annual intervals. Although the idea of investigating environmental signals through wood anatomical time series goes back to the 1960s, it is only recently that low-cost computerized image-analysis systems have enabled increased scientific output in this field. We believe that the study of tree-ring anatomy is emerging as a promising approach in tree biology and climate change research, particularly if complemented by physiological and ecological studies. This contribution presents the rationale, the potential, and the methodological challenges of this innovative approach.  相似文献   
87.
Caenorhabditis elegans is a validated model to study bacterial pathogenicity. We report that Yersinia enterocolitica strains W22703 (biovar 2, serovar O:9) and WA314 (biovar 1B, serovar O:8) kill C. elegans when feeding on the pathogens for at least 15 min before transfer to the feeding strain Escherichia coli OP50. The killing by Yersinia enterocolitica requires viable bacteria and, in contrast to that by Yersinia pestis and Yersinia pseudotuberculosis strains, is biofilm independent. The deletion of tcaA encoding an insecticidal toxin resulted in an OP50-like life span of C. elegans, indicating an essential role of TcaA in the nematocidal activity of Y. enterocolitica. TcaA alone is not sufficient for nematocidal activity because E. coli DH5α overexpressing TcaA did not result in a reduced C. elegans life span. Spatial-temporal analysis of C. elegans infected with green fluorescent protein-labeled Y. enterocolitica strains showed that Y. enterocolitica colonizes the nematode intestine, leading to an extreme expansion of the intestinal lumen. By low-dose infection with W22703 or DH5α followed by transfer to E. coli OP50, proliferation of Y. enterocolitica, but not E. coli, in the intestinal lumen of the nematode was observed. The titer of W22703 cells within the worm increased to over 106 per worm 4 days after infection while a significantly lower number of a tcaA knockout mutant was recovered. A strong expression of tcaA was observed during the first 5 days of infection. Y. enterocolitica WA314 (biovar 1B, serovar O:8) mutant strains lacking the yadA, inv, yopE, and irp1 genes known to be important for virulence in mammals were not attenuated or only slightly attenuated in their toxicity toward the nematode, suggesting that these factors do not play a significant role in the colonization and persistence of this pathogen in nematodes. In summary, this study supports the hypothesis that C. elegans is a natural host and nutrient source of Y. enterocolitica.Yersinia enterocolitica belongs to the family of Enterobacteriaceae and is a psychrotolerant human pathogen that causes gastrointestinal syndromes ranging from acute enteritis to mesenteric lymphadenitis (5). It infects a number of mammals, and swine was identified as a major source for human infection (6). A multiphasic life cycle, which comprises a free-living phase and several host-associated phases, including cold-blooded and warm-blooded hosts, appears to be characteristic for biovars 1B and 2 to 5 of Y. enterocolitica (7, 24).Nonmammalian host organisms including Dictyostelium discoideum, Drosophila melanogaster, or Caenorhabditis elegans are increasingly used to study host-pathogen interactions (16, 26). Due to the obvious parallels between the mammalian and invertebrate defense mechanisms, it has been suggested that the bacteria-invertebrate interaction has shaped the evolution of microbial pathogenicity (53). Several human pathogens including Gram-positive and Gram-negative bacteria infect and kill the soil nematode C. elegans when they are supplied as a nutrient source (42). For example, Streptococcus pneumoniae (4), Listeria monocytogenes (50), extraintestinal Escherichia coli (15), and Staphylococcus aureus (43) but not Bacillus subtilis have been shown to kill the nematode. Upon infection of C. elegans with Enterococcus faecalis, Gram-positive virulence-related factors as well as putative antimicrobials have been identified (20, 35). The extensive conservation in virulence mechanisms directed against invertebrates as well as mammals was demonstrated using a screen with Pseudomonas aeruginosa (30). In this study, 10 of 13 genes whose knockout attenuated the nematode killing were also required for full virulence in a mouse model, confirming the suitability of the C. elegans model to study bacterial pathogenicity. C. elegans is also colonized by Salmonella enterica serovar Typhimurium (S. Typhimurium). This process requires Salmonella virulence factors and was used to study the innate immune response of the nematode (1, 2, 49).The effect of pathogenic Yersinia spp. on C. elegans has also been investigated. It could be demonstrated that both Yersinia pestis and Yersinia pseudotuberculosis block food intake by creating a biofilm around the worm''s mouth (13, 27). This biofilm formation requires the hemin storage locus (hms) and has been suggested to be responsible for the blockage of the digestive tract following uptake by fleas, thus acting as a bacterial defense against predation by invertebrates. In a study with 40 Y. pseudotuberculosis strains, one-quarter of them caused an infection of C. elegans by biofilm formation on the worm head (27). In contrast, a similar effect was not observed following nematode infection with 15 Y. enterocolitica strains. Using a Y. pestis strain lacking the hms genes, it could be demonstrated that this mutant can infect and kill the nematode by a biofilm-independent mechanism that includes the accumulation of Y. pestis in the intestine of the worm (47). This pathogenesis model was applied to show that putative virulence factors such as YapH, OmpT, or a metalloprotease, Y3857, but not the virulence plasmids pCD1 and pPCP1, are required for Y. pestis virulence in C. elegans. Six yet unknown genes required for full virulence in C. elegans were also identified, and one of them appeared to be a virulence factor in the mouse infection model.C. elegans has not been used to study the pathogenicity properties of Y. enterocolitica, mainly due to the fact that many of its virulence factors are upregulated at 37°C in comparison to growth at lower temperatures while C. elegans cannot be cultivated at temperatures above 25°C. In this study, we examined for the first time the infection of C. elegans by Y. enterocolitica strains, demonstrating that this pathogen colonizes and kills C. elegans and that the insecticidal toxin TcaA, which is expressed only at ambient temperature, is required for full nematocidal activity.  相似文献   
88.
The functional role of the ABC transporter PGP-2 from the nematode Caenorhabditis elegans has been studied by combining phenotype analyses of pgp-2 deletion mutants or pgp-2 RNAi treated worms with reporter gene studies using a pgp-2::GFP construct. pgp-2 mutants showed a strong reduction of lipid stores. In addition, we found that in the case of the pgp-2 mutant or after pgp-2 RNAi the worms were unable to perform pinocytosis and to acidify intestinal lysosomes. Especially under cholesterol-restricted conditions, the viability of the mutant was reduced. Surprisingly, the chemosensory AWA neurons in the head region were identified as expression sites by reporter gene studies. These neurons are known to be involved in attraction behaviour towards odorants associated with potential food bacteria. Our results imply that PGP-2 is involved in a signalling process that connects sensory inputs to intestinal functions, possibly by influencing acidification of intestinal lysosomes, which in turn may affect pinocytosis and lipid storage.  相似文献   
89.
Golgi-derived coat protein I (COPI) vesicles mediate transport in the early secretory pathway. The minimal machinery required for COPI vesicle formation from Golgi membranes in vitro consists of (i) the hetero-heptameric protein complex coatomer, (ii) the small guanosine triphosphatase ADP-ribosylation factor 1 (Arf1) and (iii) transmembrane proteins that function as coat receptors, such as p24 proteins. Various and opposing reports exist on a role of ArfGAP1 in COPI vesicle biogenesis. In this study, we show that, in contrast to data in the literature, ArfGAP1 is not required for COPI vesicle formation. To investigate roles of ArfGAP1 in vesicle formation, we titrated the enzyme into a defined reconstitution assay to form and purify COPI vesicles. We find that catalytic amounts of Arf1GAP1 significantly reduce the yield of purified COPI vesicles and that Arf1 rather than ArfGAP1 constitutes a stoichiometric component of the COPI coat. Combining the controversial reports with the results presented in this study, we suggest a novel role for ArfGAP1 in membrane trafficking.  相似文献   
90.
In normal hyaline cartilage the predominant collagen type is collagen type II along with its associated collagens, for example, types IX and XI, produced by normal chondrocytes. In contrast, investigations have demonstrated that in vitro a switch from collagen type II to collagen type I occurs. Some authors have detected collagen type I in osteoarthritic cartilage also in vivo, especially in late stages of osteoarthritis, while others have not. In the light of these diverging results, we have attempted to elucidate which type of collagen, type I and/or type II, is synthesized in the consecutive stages of human osteoarthritis. We performed in situ hybridization and immunohistochemistry with cartilage tissue samples from patients suffering from various stages of osteoarthritis. Furthermore, we quantitated our results on the gene expression of collagen type I and type II with the help of real-time PCR. We found that with the progression of the disease not only collagen type II, but also increasing amounts of collagen type I mRNA were produced. This supports the conclusion that collagen type I gradually becomes one of the factors involved in the pathogenesis of osteoarthritis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号