首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   170篇
  免费   15篇
  185篇
  2022年   1篇
  2021年   6篇
  2020年   2篇
  2019年   3篇
  2018年   1篇
  2017年   4篇
  2016年   3篇
  2015年   1篇
  2014年   7篇
  2013年   12篇
  2012年   15篇
  2011年   10篇
  2010年   4篇
  2009年   7篇
  2008年   6篇
  2007年   7篇
  2006年   6篇
  2005年   6篇
  2004年   3篇
  2003年   9篇
  2002年   7篇
  2001年   7篇
  2000年   4篇
  1999年   5篇
  1998年   4篇
  1997年   5篇
  1996年   1篇
  1995年   3篇
  1992年   5篇
  1991年   4篇
  1989年   3篇
  1988年   2篇
  1986年   3篇
  1985年   3篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1980年   1篇
  1979年   3篇
  1978年   1篇
  1977年   1篇
  1976年   4篇
  1972年   1篇
  1971年   1篇
排序方式: 共有185条查询结果,搜索用时 0 毫秒
1.
3H-Lysergic acid diethylamide (3H-LSD) is irreversibly incorporated into bovine caudate membranes during ultraviolet light illumination. The incorporated radioligand apparently forms a covalent bond with a sub-population of the membrane proteins. Although the photolabeling pattern differs significantly from the Coomassie blue staining pattern on SDS gels, the photolabeling is apparently not specific for LSD binding sites associated with neurotransmitter receptors. 3H-LSD photolabeling can occur during prolonged exposure of membrane samples to room lighting and thus may introduce artifacts into receptor binding assays.  相似文献   
2.
V A Kissel  W J Hartig 《In vitro》1983,19(7):529-537
Mitochondria have been isolated from the codling moth Laspeyresia pomonella, CP-1268 cell line. The mitochondrial fraction was isolated from pooled 4 d, exponential growth phase, cultures. The mitochondria were determined to be intact based on the demonstration of respiratory control, the effects of 2,4 dinitrophenol and oligomycin on respiration, the inability to oxidize NADH, and the inability of cytochrome c to enhance respiration. The isolated mitochondria were able to oxidize succinate, pyruvate, malate, alpha-ketoglutarate, and alpha-glycerophosphate efficiently. Of the substrates tested, the CP-1268 mitochondria oxidized succinate most efficiently. The respiratory control ratios ranged from a high of 4.6 for pyruvate to a low of 1.7 with alpha-glycerophosphate. These findings confirm that the mitochondria were tightly coupled. The data also confirm the presence of three sites of oxidative phosphorylation because NAD-linked substrates had ADP-to-O ratios approaching 3 and flavoprotein linked substrates had values approaching 2.  相似文献   
3.
The eukaryotic glyoxylate cycle has been previously hypothesized to occur in the peroxisomal compartment, which in the yeast Saccharomyces cerevisiae additionally represents the sole site for fatty acid beta-oxidation. The subcellular location of the key glyoxylate-cycle enzyme malate synthase 1 (Mls1p), an SKL-terminated protein, was examined in yeast cells grown on different carbon sources. Immunoelectron microscopy in combination with cell fractionation showed that Mls1p was abundant in the peroxisomes of cells grown on oleic acid, whereas in ethanol-grown cells Mls1p was primarily cytosolic. This was reinforced using a green fluorescent protein (GFP)-Mls1p reporter, which entered peroxisomes solely in cells grown under oleic acid-medium conditions. Although growth of cells devoid of Mls1p on ethanol or acetate could be fully restored using a cytosolic Mls1p devoid of SKL, this construct could only partially alleviate the requirement for native Mls1p in cells grown on oleic acid. The combined results indicated that Mls1p remained in the cytosol of cells grown on ethanol, and that targeting of Mls1p to the peroxisomes was advantageous to cells grown on oleic acid as a sole carbon source.  相似文献   
4.
BACKGROUND/AIMS: TFF3, a member of the TFF (trefoil factor family) peptides, and epidermal growth factor (EGF) actively support the repair of mucosal barriers, particularly during restitution. The aim of this study was to compare the motogenic effects of TFF3 and EGF. METHODS: The influence of recombinant human TFF3 (dimeric form) and EGF on the migration of IEC-18 cells was characterized in an in vitro restitution model (scratch wound assay) with the help of time-lapse video microscopy, morphometry, and immunocytochemistry including confocal laser scanning microscopy. RESULTS: TFF3- and EGF-treated cells re-populated the wounded area via different migration patterns; TFF3 treatment resulted in the formation of continuous sheets of migrating cells with only a few gaps. In contrast, EGF-treated cells formed a network of migrating cells (often with a fibroblast-like morphology) with numerous gaps and only punctual contacts. TFF3 and EGF treatment also changed the localization of E-cadherin indicating endocytotic recycling and/or degradation of E-cadherin. CONCLUSION: TFF3, in contrast to EGF, enhanced a collective cell migration ensuring a precise coverage of the re-populated area avoiding gaps.  相似文献   
5.
Besides the well‐understood DNA damage response via establishment of G2 checkpoint arrest, novel studies focus on the recovery from arrest by checkpoint override to monitor cell cycle re‐entry. The aim of this study was to investigate the role of Chk1 in the recovery from G2 checkpoint arrest in HCT116 (human colorectal cancer) wt, p53–/– and p21–/– cell lines following H2O2 treatment. Firstly, DNA damage caused G2 checkpoint activation via Chk1. Secondly, overriding G2 checkpoint led to (i) mitotic slippage, cell cycle re‐entry in G1 and subsequent G1 arrest associated with senescence or (ii) premature mitotic entry in the absence of p53/p21WAF1 causing mitotic catastrophe. We revealed subtle differences in the initial Chk1‐involved G2 arrest with respect to p53/p21WAF1: absence of either protein led to late G2 arrest instead of the classic G2 arrest during checkpoint initiation, and this impacted the release back into the cell cycle. Thus, G2 arrest correlated with downstream senescence, but late G2 arrest led to mitotic catastrophe, although both cell cycle re‐entries were linked to upstream Chk1 signalling. Chk1 knockdown deciphered that Chk1 defines long‐term DNA damage responses causing cell cycle re‐entry. We propose that recovery from oxidative DNA damage‐induced G2 arrest requires Chk1. It works as cutting edge and navigates cells to senescence or mitotic catastrophe. The decision, however, seems to depend on p53/p21WAF1. The general relevance of Chk1 as an important determinant of recovery from G2 checkpoint arrest was verified in HT29 colorectal cancer cells.  相似文献   
6.
Recent studies have shown that the diversity of flowering plants can enhance pollinator richness and visitation frequency and thereby increase the resilience of pollination. It is assumed that flower traits explain these effects, but it is still unclear which flower traits are responsible, and knowing that, if pollinator richness and visitation frequency are more driven by mass‐ratio effects (mean trait values) or by trait diversity. Here, we analyse a three‐year data set of pollinator observations collected in a European grassland plant diversity experiment (The Jena experiment). The data entail comprehensive flower trait measurements, including reward traits (nectar and pollen amount), morphological traits (height, symmetry, area, colour spectra) and chemical traits (nectar‐amino acid and nectar‐sugar concentration). We test if pollinator species richness and visitation frequency of flower communities depend on overall functional diversity combining all flower traits within a community, single trait diversities (within trait variation) and community‐weighted means of the single traits, using Bayesian inference. Overall functional diversity did not affect pollinator species richness, but reduced visitation frequency. When looking at individual flower traits separately, we found that single trait diversity of flower reflectance and flower morphology were important predictors of pollinator visitation frequency. Moreover, independent of total flower abundance, community‐weighted means of flower height, area, reflectance, nectar‐sugar concentration and nectar‐amino acid concentration strongly affected both pollinator species richness and visitation frequency. Our results, challenge the idea that functional diversity always positively affects ecosystem functions. Nonetheless, we demonstrate that both single trait diversity and mass‐ratio effects of flower traits play an important role for diverse and frequent flower visits, which underlines the functionality of flower traits for pollination services.  相似文献   
7.
The production of hydrogen peroxide (H2O2) drives tumourigenesis in ulcerative colitis (UC). Recently, we showed that H2O2 activates DNA damage checkpoints in human colonic epithelial cells (HCEC) through c‐Jun N‐terminal Kinases (JNK) that induces p21WAF1. Moreover, caspases circumvented the G1/S and intra‐S checkpoints, and cells accumulated in G2/M. The latter observation raised the question of whether repeated H2O2 exposures alter JNK activation, thereby promoting a direct passage of cells from G2/M arrest to driven cell cycle progression. Here, we report that increased proliferation of repeatedly H2O2‐exposed HCEC cells (C‐cell cultures) was associated with (i) increased phospho‐p46 JNK, (ii) decreased total JNK and phospho‐p54 JNK and (iii) p21WAF1 down‐regulation. Altered JNK activation and p21WAF1 down‐regulation were accompanied by defects in maintaining G2/M and mitotic spindle checkpoints through adaptation, as well as by apoptosis resistance following H2O2 exposure. This may cause increased proliferation of C‐cell cultures, a defining initiating feature in the inflammation‐carcinoma pathway in UC. We further suggest that dysregulated JNK activation is attributed to a non‐apoptotic function of caspases, causing checkpoint adaptation in C‐cell cultures. Additionally, loss of cell‐contact inhibition and the overcoming of senescence, hallmarks of cancer, contributed to increased proliferation. Furthermore, there was evidence that p54 JNK inactivation is responsible for loss of cell‐contact inhibition. We present a cellular model of UC and suggest a sinusoidal pattern of proliferation, which is triggered by H2O2‐induced reactive oxygen species generation, involving an interplay between JNK activation/inactivation, p21WAF1, c‐Fos, c‐Jun/phospho‐c‐Jun, ATF2/phospho‐ATF2, β‐catenin/TCF4‐signalling, c‐Myc, CDK6 and Cyclin D2, leading to driven cell cycle progression.  相似文献   
8.
K(+) conductance is a major determinant of membrane potential (V(m)) in vascular smooth muscle (VSMC) and endothelial cells (EC). The vascular tone is controlled by V(m) through the action of voltage-operated Ca(2+) channels (VOCC) in VSMC. Increased K(+) conductance leads to hyperpolarization and vasodilation, while inactivation of K(+) channels causes depolarization and vasoconstriction. K(+) channels in EC indirectly participate in the control of vascular tone by several mechanisms, e.g., release of nitric oxide and endothelium-derived hyperpolarizing factor. In the kidney, a change in the activity of one or more classes of K(+) channels will lead to a change in hemodynamic resistance and therefore of renal blood flow and glomerular filtration pressure. Through these effects, the activity of renal vascular K(+) channels influences renal salt and water excretion, fluid homeostasis, and ultimately blood pressure. Four main classes of K(+) channels [calcium activated (K(Ca)), inward rectifier (K(ir)), voltage activated (K(V)), and ATP sensitive (K(ATP))] are found in the renal vasculature. Several in vitro experiments have suggested a role for individual classes of K(+) channels in the regulation of renal vascular function. Results from in vivo experiments are sparse. We discuss the role of the different classes of renal vascular K(+) channels and their possible role in the integrated function of the renal microvasculature. Since several pathological conditions, among them hypertension, are associated with alterations in K(+) channel function, the role of renal vascular K(+) channels in the control of salt and water excretion deserves attention.  相似文献   
9.
Gradual changes in steady-state levels of beta amyloid peptides (Aβ) in brain are considered an initial step in the amyloid cascade hypothesis of Alzheimer's disease. Aβ is a product of the secretase cleavage of amyloid precursor protein (APP). There is evidence that the membrane lipid environment may modulate secretase activity and alters its function. Cleavage of APP strongly depends on membrane properties. Since Aβ perturbs cell membrane fluidity, the cell membrane may be the location where the neurotoxic cascade of Aβ is initiated. Therefore, we tested effects of oligomeric Aβ on membrane fluidity of whole living cells, the impact of exogenous and cellular Aβ on the processing of APP and the role of GM-1 ganglioside. We present evidence that oligoAβ(1-40) stimulates the amyloidogenic processing of APP by reducing membrane fluidity and complexing with GM-1 ganglioside. This dynamic action of Aβ may start a vicious circle, where endogenous Aβ stimulates its own production. Based on our novel findings, we propose that oligoAβ(1-40) accelerates the proteolytic cleavage of APP by decreasing membrane fluidity.  相似文献   
10.
Specific and unspecific responses of plants to cold and drought stress   总被引:2,自引:0,他引:2  
Different environmental stresses to a plant may result in similar responses at the cellular and molecular level. This is due to the fact that the impacts of the stressors trigger similar strains and downstream signal transduction chains. A good example for an unspecific response is the reaction to stressors which induce water deficiency e.g. drought, salinity and cold, especially frost. The stabilizing effect of liquid water on the membrane bilayer can be supported by compatible solutes and special proteins. At the metabolic level, osmotic adjustment by synthesis of low-molecular osmolytes (carbohydrates, betains, proline) can counteract cellular dehydration and turgor loss. Taking the example of Pinus sylvestris, changes at the level of membrane composition, and concomitantly of photosynthetic capacity during frost hardening is shown. Additionally the effect of photoperiod as measured via the phytochrome system and the effect of subfreezing temperatures on the incidence of frost hardening is discussed. Extremely hydrophilic proteins such as dehydrins are common products protecting not only the biomembranes in ripening seeds (late embryogenesis abundant proteins) but accumulate also in the shoots and roots during cold adaptation, especially in drought tolerant plants. Dehydrins are characterized by conserved amino acid motifs, called the K-, Y-or S-segments. Accumulation of dehydrins can be induced not only by drought, but also by cold, salinity, treatment with abscisic acid and methyl jasmonate. Positive effects of the overexpression of a wild chickpea (Cicer pinnatifidum) dehydrin in tobacco plants on the dehydration tolerance is shown. The presentation discusses the perception of cold and drought, the subsequent signal transduction and expression of genes and their products. Differences and similarities between the plant responses to both stressors are also discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号