首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   374篇
  免费   14篇
  388篇
  2022年   6篇
  2021年   9篇
  2020年   6篇
  2019年   4篇
  2018年   7篇
  2017年   9篇
  2016年   6篇
  2015年   22篇
  2014年   14篇
  2013年   20篇
  2012年   25篇
  2011年   30篇
  2010年   27篇
  2009年   12篇
  2008年   11篇
  2007年   16篇
  2006年   23篇
  2005年   16篇
  2004年   7篇
  2003年   8篇
  2002年   15篇
  2001年   11篇
  2000年   7篇
  1999年   8篇
  1998年   1篇
  1997年   2篇
  1996年   4篇
  1995年   1篇
  1994年   2篇
  1993年   4篇
  1992年   2篇
  1991年   7篇
  1990年   8篇
  1989年   2篇
  1988年   3篇
  1987年   4篇
  1986年   3篇
  1985年   6篇
  1984年   3篇
  1983年   3篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1977年   3篇
  1974年   3篇
  1972年   3篇
  1966年   1篇
  1965年   1篇
排序方式: 共有388条查询结果,搜索用时 0 毫秒
81.
The quantitative structure-activity relationship (QSAR) studies conducted by us earlier revealed the cardinal role of the pyran ring carbonyl group in the acetoxy polyphenolic compounds for the acetoxy polyphenol:protein transacetylase (TAase) activity. Hence, an attempt was made to examine whether such substrate analogues of benzopyran acetates which lack in the pyran ring carbonyl group, such as 7-acetoxy-2,3-dihydro-2,2-dimethylbenzopyran (BPA), cetachin pentaacetate (CPA) and hematoxylin pentaacetate (HPA) could inhibit the 7,8-diacetoxy-4-methylcoumarin (DAMC):protein (glutathione-S-transferase) transacetylase activity. These compounds were indeed found to remarkably inhibit the TAase activity in a concentration dependent manner and exerted their inhibitory action very rapidly. Further BPA, CPA and HPA were found to abolish the TAase mediated activation of NADPH cytochrome C reductase as well as the inhibition of liver microsome catalyzed aflatoxin B(1) (AFB(1))-DNA binding by DAMC very effectively. These results strongly suggest that the acetoxybenzopyrans merit as potent inhibitors of TAase.  相似文献   
82.
83.
In this report we have identified for the first time a transacetylase (TAase) in a mesophilic fungi Starkeyomyces koorchalomoides catalyzing the transfer of acetyl group from polyphenolic acetate (PA) to a receptor protein glutathione S-transferase (GST). An elegant assay procedure was established for TAase based on its ability to mediate inhibition of GST by 7,8-diacetoxy-4-methylcoumarin (DAMC), a model PA. Utilizing this assay procedure, S. koorchalomoides TAase was purified to homogeneity. TAase was found to have MW of 50 kDa. The purified enzyme exhibited maximum activity at 45 °C at pH 6.8. The N-terminal sequence of purified fungal TAase (ANDASTVED) showed identity with corresponding N-terminal sequence of dihydrolipoamide dehydrogenase (LADH), a mitochondrial matrix enzyme and an E3 component of pyruvate dehydrogenase complex (PDHC). TAase was found to have all the properties of LADH and avidly interacted with the anti-LADH antibody. TAase catalyzed acetylation of GST by DAMC was identified by LC–MS/MS and a single lysine residue (Lys-113) was found to be acetylated. Further, recombinant LADH from Streptococcus pneumoniae lacking lipoyl domain was found to exhibit little TAase activity, suggesting the role of lipoyl domain in the TAase activity of LADH. These observations bear evidence for the protein acetyltransferase activity of LADH. Such an activity of LADH can be attributed as a moonlighting function of the enzyme.  相似文献   
84.
Coenzyme Q10 (CoQ10) or Ubiquinone10 (UQ10), an isoprenylated benzoquinone, is well-known for its role as an electron carrier in aerobic respiration. It is a sole representative of lipid soluble antioxidant that is synthesized in our body. In recent years, it has been found to be associated with a range of patho-physiological conditions and its oral administration has also reported to be of therapeutic value in a wide spectrum of chronic diseases. Additionally, as an antioxidant, it has been widely used as an ingredient in dietary supplements, neutraceuticals, and functional foods as well as in anti-aging creams. Since its limited dietary uptake and decrease in its endogenous synthesis in the body with age and under various diseases states warrants its adequate supply from an external source. To meet its growing demand for pharmaceutical, cosmetic and food industries, there is a great interest in the commercial production of CoQ10. Various synthetic and fermentation of microbial natural producers and their mutated strains have been developed for its commercial production. Although, microbial production is the major industrial source of CoQ10 but due to low yield and high production cost, other cost-effective and alternative sources need to be explored. Plants, being photosynthetic, producing high biomass and the engineering of pathways for producing CoQ10 directly in food crops will eliminate the additional step for purification and thus could be used as an ideal and cost-effective alternative to chemical synthesis and microbial production of CoQ10. A better understanding of CoQ10 biosynthetic enzymes and their regulation in model systems like E. coli and yeast has led to the use of metabolic engineering to enhance CoQ10 production not only in microbes but also in plants. The plant-based CoQ10 production has emerged as a cost-effective and environment-friendly approach capable of supplying CoQ10 in ample amounts. The current strategies, progress and constraints of CoQ10 production in plants are discussed in this review.  相似文献   
85.
The deficiency of keto acid decarboxylase in maple syrup urine disease results in the accumulation of branched chain amino acids and their corresponding keto acids in tissues and body fluids. The effects of abnormal metabolites were investigated on neurotransmitter receptor binding in rat brain. alpha-Keto acids caused selective in vitro decrease in alpha-adrenergic, beta-adrenergic receptor binding in synaptosomal preparations from rat brain. No significant changes were observed in binding of cholinergic, GABA, and dopamine receptors binding in appropriate rat brain preparations. These results indicate that selective inhibition of adrenergic receptor binding by branched chain keto acids may presumably account for neural abnormality in maple syrup urine disease.  相似文献   
86.

Introduction

Multidrug-resistant Tuberculosis (MDR TB) is emerging public health concern globally. Lost to follow-up (LTFU) is one of the key challenge in MDRTB treatment. In 2013, 18% of MDR TB patients were reported LTFU in India. A qualitative study was conducted to obtain better understanding of both patient and provider related factors for LTFU among MDR TB treatment.

Methods

Qualitative semi-structured personal interviews were conducted with 20 MDRTB patients reported as LTFU and 10 treatment providers in seven districts linked to Nagpur Drug resistant TB Centre (DRTBC) during August 2012–February 2013. Interviews were transcribed and inductive content analysis was performed to derive emergent themes.

Results

We found multiple factors influencing MDR TB treatment adherence. Barriers to treatment adherence included drug side effects, a perceived lack of provider support, patient financial constraints, conflicts with the timing of treatment services, alcoholism and social stigma.

Conclusions

Patient adherence to treatment is multi-factorial and involves individual patient factors, provider factors, and community factors. Addressing issue of LTFU during MDRTB treatment requires enhanced efforts towards resolving medical problems like adverse drug effects, developing short duration treatment regimens, reducing pill burden, motivational counselling, flexible timings for DOT services, social, family support for patients & improving awareness about disease.  相似文献   
87.
88.
Immobilized Candida antarctica lipase and Thermomyces lanuginosus lipase catalyze the deacylation of precursors of LNA analogs, 4'-C-acyloxymethyl-2',3',5'-tri-O-acyl-beta-L-threo-pentofuranosylthymine and 4-C-acyloxymethyl-3,5-di-O-acyl-1,2-O-(1-methylethylidene)-beta-L-threo-pentofuranose, respectively in a highly selective and efficient manner.  相似文献   
89.
Studies initiated to investigate the expression of cytochrome P450 2E1 (CYP2E1) in rat brain demonstrated low but detectable protein and mRNA expression in control rat brain. Though mRNA and protein expression of CYP2E1 in brain was several fold lower as compared to liver, relatively high activity of N-nitrosodimethylamine demethylase (NDMA-d) was observed in control rat brain microsomes. Like liver, pretreatment with CYP2E1 inducers such as ethanol or pyrazole or acetone significantly increased the activity of brain microsomal NDMA-d. Kinetic studies also showed an increase in the Vmax and affinity (Km) of the substrate towards the brain enzyme due to increased expression of CYP2E1 in microsomes of brain isolated from ethanol pretreated rats. In vitrostudies using organic inhibitors, specific for CYP2E1 and anti-CYP2E1 significantly inhibited the brain NDMA-d activity indicating that like liver, NDMA-d activity in rat brain is catalyzed by CYP2E1. Olfactory lobes exhibited the highest CYP2E1 expression and catalytic activity in control rats. Furthermore, several fold increase in the mRNA expression and activity of CYP2E1 in cerebellum and hippocampus while a relatively small increase in the olfactory lobes and no significant change in other brain regions following ethanol pretreatment have indicated that CYP2E1 induction maybe involved in selective sensitivity of these brain areas to ethanol induced free radical damage and neuronal degeneration.  相似文献   
90.
Studies initiated to investigate the presence of cytochrome P4503A (CYP3A) isoenzymes in brain revealed constitutive mRNA and protein expression of CYP3A1 in rat brain. Western blotting studies showed that pretreatment with CYP3A inducer such as pregnenolone-16α -carbonitrile (PCN) significantly increased the cross reactivity comigrating with hepatic CYP3A1 and CYP3A2 in rat brain microsomes. RT-PCR studies have also shown increase in mRNA expression of CYP3A1 following pretreatment of rats with PCN. The ability of rat brain microsomes to catalyze the demethylation of erythromycin, known to be mediated by CYP3A isoenzymes in liver and significant increase in the activity of erythromycin demethylase (EMD) following pretreatment with dexamethasone or PCN have indicated that CYP3A isoenzymes expressed in brain are functionally active. Kinetic studies revealed that increase in the enzyme activity following pretreatment with PCN resulted in increase in the apparent affinity (Km) and Vmax of the reaction. Similarities in the inhibition of the constitutive and inducible brain and liver EMD activity following in vitro addition of ketoconazole, a inhibitor specific for CYP3A catalysed reactions and anti-CYP3A have further indicated that like in liver, CYP3A isoenzymes catalyse the activity of EMD in rat brain. Data also revealed regional differences in the activity of EMD in the brain. Relatively higher constitutive as well as inducible mRNA expression of CYP3A1 in hypothalamus and hippocampus, the brain regions responsive to steroid hormones have suggested that CYP3A isoenzymes may not only be involved in the process of detoxication mechanism but also in the metabolism of endogenous substrates in brain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号