首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2407篇
  免费   131篇
  国内免费   1篇
  2023年   13篇
  2022年   35篇
  2021年   59篇
  2020年   37篇
  2019年   40篇
  2018年   52篇
  2017年   38篇
  2016年   77篇
  2015年   92篇
  2014年   130篇
  2013年   175篇
  2012年   171篇
  2011年   149篇
  2010年   105篇
  2009年   78篇
  2008年   115篇
  2007年   118篇
  2006年   122篇
  2005年   97篇
  2004年   87篇
  2003年   85篇
  2002年   77篇
  2001年   59篇
  2000年   57篇
  1999年   41篇
  1998年   12篇
  1997年   16篇
  1996年   18篇
  1995年   16篇
  1994年   14篇
  1992年   24篇
  1991年   17篇
  1990年   25篇
  1989年   34篇
  1988年   12篇
  1987年   17篇
  1986年   20篇
  1985年   18篇
  1984年   16篇
  1983年   16篇
  1982年   14篇
  1981年   16篇
  1980年   7篇
  1979年   16篇
  1978年   10篇
  1977年   11篇
  1976年   15篇
  1975年   11篇
  1969年   6篇
  1968年   9篇
排序方式: 共有2539条查询结果,搜索用时 31 毫秒
151.
Genetically altered mice are increasingly used as experimental models. However, ANG II responses in mouse blood vessels have not been well defined. Therefore, the aim of this study was to determine the role of ANG II in regulating major blood vessels in C57/BL6J mice with isometric force measurements. Our results showed that in mouse abdominal aorta ANG II induced a concentration-dependent contraction (EC50 4.6 nM) with a maximum contraction of 75.1 +/- 4.9% at 100 nM compared with that of 60 mM K+. Similarly, femoral artery also exhibited a contractile response of 76.0 +/- 3.4% to the maximum concentration of ANG II (100 nM). In contrast, ANG II (100 nM)-induced contraction was significantly less in carotid artery (24.5 +/- 6.6%) and only minimal (3.5 +/- 0.31%) in thoracic aorta. The nitric oxide synthase inhibitor N omega-nitro-L-arginine methyl ester and the AT2 antagonist PD-123319 failed to enhance ANG II-induced contractions. However, an AT1 antagonist, losartan (10 microM), completely inhibited ANG II (100 nM) response in abdominal aorta and carotid artery. An AT1 agonist, [Sar1]-ANG II (100 nM), behaved similarly to ANG II (100 nM) in abdominal aorta and carotid artery. RT-PCR analyses showed that mouse thoracic aorta has a significantly lower AT1 mRNA level than abdominal aorta. These results demonstrate that major mouse vessels exhibit differential contractions to ANG II, possibly because of varied AT1 receptor levels.  相似文献   
152.
The evolution of ligand specificity underlies many important problems in biology, from the appearance of drug resistant pathogens to the re-engineering of substrate specificity in enzymes. In studying biomolecules, however, the contributions of macromolecular sequence to binding specificity can be obscured by other selection pressures critical to bioactivity. Evolution of ligand specificity in vitro—unconstrained by confounding biological factors—is addressed here using variants of three flavin-binding RNA aptamers. Mutagenized pools based on the three aptamers were combined and allowed to compete during in vitro selection for GMP-binding activity. The sequences of the resulting selection isolates were diverse, even though most were derived from the same flavin-binding parent. Individual GMP aptamers differed from the parental flavin aptamers by 7 to 26 mutations (20 to 57% overall change). Acquisition of GMP recognition coincided with the loss of FAD (flavin-adenine dinucleotide) recognition in all isolates, despite the absence of a counter-selection to remove FAD-binding RNAs. To examine more precisely the proximity of these two activities within a defined sequence space, the complete set of all intermediate sequences between an FAD-binding aptamer and a GMP-binding aptamer were synthesized and assayed for activity. For this set of sequences, we observe a portion of a neutral network for FAD-binding function separated from GMP-binding function by a distance of three mutations. Furthermore, enzymatic probing of these aptamers revealed gross structural remodeling of the RNA coincident with the switch in ligand recognition. The capacity for neutral drift along an FAD-binding network in such close approach to RNAs with GMP-binding activity illustrates the degree of phenotypic buffering available to a set of closely related RNA sequences—defined as the sets functional tolerance for point mutations—and supports neutral evolutionary theory by demonstrating the facility with which a new phenotype becomes accessible as that buffering threshold is crossed.  相似文献   
153.
We have recently reported that osteopontin (OPN) induces nuclear factor kappaB (NFkappaB)-mediated promatrix metalloproteinase-2 activation through IkappaBalpha/IKK signaling pathways and that curcumin (diferulolylmethane) down-regulates these pathways (Philip, S., and Kundu, G. C. (2003) J. Biol. Chem. 278, 14487-14497). However, the molecular mechanism by which upstream kinases regulate the OPN-induced NFkappaB activation and urokinase type plasminogen activator (uPA) secretion in human breast cancer cells is not well defined. Here we report that OPN induces the phosphatidylinositol 3'-kinase (PI 3'-kinase) activity and phosphorylation of Akt in highly invasive MDA-MB-231 and low invasive MCF-7 cells. The OPN-induced Akt phosphorylation was inhibited when cells were transfected with a dominant negative mutant of the p85 domain of PI 3-kinase (Deltap85) and enhanced when cells were transfected with an activated form of PI 3-kinase (p110CAAX), indicating that PI 3'-kinase is involved in Akt phosphorylation. OPN enhances the interaction between IkappaBalpha kinase (IKK) and phosphorylated Akt. OPN also induces NFkappaB activation through phosphorylation and degradation of IkappaBalpha by inducing the IKK activity. However, both pharmacological (wortmannin and LY294002) and genetic (Deltap85) inhibitors of PI 3'-kinase inhibited OPN-induced Akt phosphorylation, IKK activity, and NFkappaB activation through phosphorylation and degradation of IkappaBalpha. OPN also enhances uPA secretion, cell motility, and extracellular matrix invasion. Furthermore, cells transfected with Deltap85 or the super-repressor form of IkappaBalpha suppressed the OPN-induced uPA secretion and cell motility, whereas cells transfected with p110CAAX enhanced these effects. Pretreatment of cells with PI 3-kinase inhibitors or NFkappaB inhibitory peptide (SN-50) reduced the OPN-induced uPA secretion, cell motility, and invasion. To our knowledge, this is first report that OPN induces NFkappaB activity and uPA secretion by activating PI 3'-kinase/Akt/IKK-mediated signaling pathways and further demonstrates a functional molecular link between OPN-induced PI 3'-kinase-dependent Akt phosphorylation and NFkappaB-mediated uPA secretion, and all of these ultimately control the motility of breast cancer cells.  相似文献   
154.
155.
We recently showed that 5'-terminal secondary structures in CpG DNA affect activity significantly more than those at the 3'-end [Biochem. Biophys. Res. Commun. 306 (2003) 948]. The need for an accessible 5'-end of CpG DNA for activity suggested that the receptor reads the DNA sequence from this end. In continuation of these studies, we have designed immunomodulatory oligonucleotides (IMOs), consisting of a nine-mer stimulatory domain, containing a CpG motif and a hairpin-loop structure at the 3'-end, referred to as self-stabilized CpG DNAs. We studied the ability of self-stabilized CpG DNAs to stimulate human B-cell proliferation and interferon-alpha (IFN-alpha) secretion in plasmacytoid dendritic cell (pDC) culture assays. Self-stabilized CpG DNAs activated human B cells and induced plasmacytoid dendritic cells to secrete high levels of IFN-alpha. While both stimulatory and secondary structures in CpG DNAs were required for pDC activation, CpG motifs were sufficient to activate B cells. Interestingly, CpG motifs were not required for activity in the hairpin duplex region. Further modifications of the hairpin duplex region with a mixture of oligodeoxynucleotides and oligo-2'-O-methylribonucleotides in a heteroduplex formation permitted activation of both human B cells and pDCs.  相似文献   
156.
Mitogen-activated protein kinase (MAPK) cascade(s) is important for plant defense/stress responses. Though MAPKs have been identified and characterized in rice (Oryza sativa L.), a monocot cereal crop research model, the first upstream component of the kinase cascade, namely MAPK kinase kinase (MAPKKK) has not yet been identified. Here we report the cloning of a novel rice gene encoding a MAPKKK, OsEDR1, designated based on its homology with the Arabidopsis MAPKKK, AtEDR1. OsEDR1, a single copy gene in the genome of rice, encodes a predicted protein with molecular mass of 113046.13 and a pI of 9.03. Using our established two-week-old rice seedling in vitro model system, we show that OsEDR1 has a constitutive expression in seedling leaves and is further up-regulated within 15 min upon wounding by cut, treatment with the global signals jasmonic acid (JA), salicylic acid (SA), ethylene (ethephon, ET), abscisic acid, and hydrogen peroxide. In addition, protein phosphatase inhibitors, fungal elicitor chitosan, drought, high salt and sugar, and heavy metals also dramatically induce its expression. Moreover, OsEDR1 expression was altered by co-application of JA, SA, and ET, and required de novo synthesized protein factor(s) in its transient regulation. Furthermore, using an in vivo system we also show that OsEDR1 responds to changes in temperature and environmental pollutants-ozone and sulfur dioxide. Finally, OsEDR1 expression varied significantly in vegetative and reproductive tissues. These results suggest a role for OsEDR1 in defense/stress signalling pathways and development.  相似文献   
157.
Metallothionein (NIT) and zinc concentrations have been estimated in luminal fluids of caput/corpus and cauda epididymis and serum of zinc deficient (ZD), pairfed (PF) and control--ad libitum fed (ZC) groups of Wistar rats. MT decreased significantly in luminal fluids of caput corpus and cauda epididymis and serum of zinc deficient rats as compared to their respective controls. However, the decrease was non-significant in luminal fluids of corpus epididymis and serum of 4-weeks zinc deficient animals as compared to their control. Zinc levels also declined significantly in luminal fluids of epididymis and serum of zinc deficient rats as compared to their respective pairfed and control groups. Thus zinc deficiency state reduces zinc and MT concentrations in luminal fluid of epididymis and serum.  相似文献   
158.
159.
Paraoxonase-1 (PON1), an high density lipoprotein (HDL)-associated organophosphate triesterase, suppresses atherosclerosis in an unknown way. Purified PON1 protects lipoprotein particles from oxidative modification and hydrolyzes pro-atherogenic oxidized phospholipids and the inflammatory mediator platelet-activating factor (PAF). We find human PON1 acted as a phospholipase A(2) but not as a phospholipase C or D through cleavage of phosphodiester bonds as expected. PON1 requires divalent cations, but EDTA did not block the phospholipase A(2) activity of PON1. In contrast, a serine esterase inhibitor abolished phospholipase activity even though PON1 has no active-site serine residues. PAF acetylhydrolase, an oxidized phospholipid phospholipase A(2), is a serine esterase associated with specific HDL particles. Western blotting did not reveal detectable amounts of PAF acetylhydrolase in PON1 preparations, although very low amounts of PAF acetylhydrolase might still account for PON1 phospholipase A(2) activity. We revised the standard PON1 purification by first depleting HDL of PAF acetylhydrolase to find PON1 purified in this way no longer hydrolyzed oxidized phospholipids or PAF. Serum from a donor with an inactivating mutation in the PAF acetylhydrolase gene did not hydrolyze oxidized phospholipids or PAF, yet displayed full paraoxonase activity. We conclude that PAF acetylhydrolase is the sole phospholipase A(2) of HDL and that PON1 has no phospholipase activity toward PAF or pro-atherogenic oxidized phospholipids.  相似文献   
160.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号