首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   279篇
  免费   23篇
  2023年   3篇
  2022年   5篇
  2021年   3篇
  2020年   2篇
  2019年   4篇
  2018年   4篇
  2017年   2篇
  2016年   14篇
  2015年   9篇
  2014年   17篇
  2013年   28篇
  2012年   36篇
  2011年   22篇
  2010年   14篇
  2009年   12篇
  2008年   15篇
  2007年   16篇
  2006年   11篇
  2005年   13篇
  2004年   8篇
  2003年   7篇
  2002年   12篇
  2001年   7篇
  2000年   7篇
  1999年   3篇
  1998年   1篇
  1997年   2篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1988年   3篇
  1987年   3篇
  1986年   2篇
  1985年   2篇
  1981年   2篇
  1979年   2篇
  1975年   2篇
  1972年   2篇
  1971年   1篇
  1946年   2篇
排序方式: 共有302条查询结果,搜索用时 390 毫秒
91.

BACKGROUND:

Recurrent pregnancy loss is a common occurrence and a matter of concern for couples planning the pregnancy. Chromosomal abnormalities, mainly balanced rearrangements, are common in couples with repeated miscarriages.

PURPOSE:

The purpose of this study is to evaluate the contribution of chromosomal anomalies causing repeated spontaneous miscarriages and provide detailed characterization of a few structurally altered chromosomes.

MATERIALS AND METHODS:

A retrospective cytogenetic study was carried out on 4859 individuals having a history of recurrent miscarriages. The cases were analyzed using G-banding and fluorescence in situ hybridization wherever necessary.

RESULTS:

Chromosomal rearrangements were found in 170 individuals (3.5%). Translocations were seen in 72 (42.35%) cases. Of these, reciprocal translocations constituted 42 (24.70%) cases while Robertsonian translocations were detected in 30 (17.64%) cases. 7 (4.11%) cases were mosaic, 8 (4.70%) had small supernumerary marker chromosomes and 1 (0.6%) had an interstitial microdeletion. Nearly, 78 (1.61%) cases with heteromorphic variants were seen of which inversion of Y chromosome (57.70%) and chromosome 9 pericentromeric variants (32.05%) were predominantly involved.

CONCLUSIONS:

Chromosomal analysis is an important etiological investigation in couples with repeated miscarriages. Characterization of variants/marker chromosome enable calculation of a more precise recurrent risk in a subsequent pregnancy thereby facilitating genetic counseling and deciding further reproductive options.  相似文献   
92.
The mungbean plants were grown hydroponically in the absence (control) or presence of 0.1, 0.25, 0.50 and 0.75 ppm selenium (as sodium selenate) for 10 days. The growth of shoots and roots increased with application of selenium with greater extent in shoots. With 0.5 and 0.75 ppm Se levels, the shoot growth was stimulated by 24% to 27% over control, respectively, while the roots showed a corresponding increase of 18-19%, respectively. The shoot-to-root ratio was enhanced significantly with Se application and maximum effects occurred at 0.75 ppm Se. A significant increase was observed in chlorophyll and cellular respiration ability with 0.5 and 0.75 ppm selenium. The increase in growth by selenium was accompanied by elevation of starch, sucrose and reducing sugars. The activity of starch hydrolysing enzymes--amylases and sucrose hydrolysing enzyme--invertase was stimulated significantly with selenium. This was associated with elevation of activities of sucrose synthesising enzymes--sucrose synthase and sucrose phosphate synthase. It was concluded that increase in growth of shoots and roots by application of Se was possibly the result of up-regulation of enzymes of carbohydrate metabolism thus providing energy substrates for enhanced growth.  相似文献   
93.
Osmotin and osmotin-like proteins are stress proteins belonging to the plant PR-5 group of proteins induced in several plant species in response to various types of biotic and abiotic stresses. We report here the overexpression of tobacco osmotin in transgenic mulberry plants under the control of a constitutive promoter (CaMV 35S) as well as a stress-inducible rd29A promoter. Southern analysis of the transgenic plants revealed the stable integration of the introduced genes in the transformants. Real-time PCR analysis provided evidence for the expression of osmotin in the transgenic plants under both the constitutive and stress-inducible promoters. Transgenic plants with the stress-inducible promoter were observed to better tolerate salt and drought stress than those with the constitutive promoter. Transgenic plants when subjected to simulated salinity and drought stress conditions showed better cellular membrane stability (CMS) and photosynthetic yield than non-transgenic plants under conditions of both salinity and drought stress. Proline levels were very high in transgenic plants with the constitutive promoter relative to those with the stress-inducible promoter. Fungal challenge undertaken with three fungal species known to cause serious losses to mulberry cultivation, namely, Fusarium pallidoroseum, Colletotrichum gloeosporioides and Colletotrichum dematium, revealed that transgenic plants with osmotin under control of the constitutive promoter had a better resistance than those with osmotin under the control of the stress-inducible promoter. Evaluation in next generation was undertaken by studying bud break in transgenic and non-transgenic plants under simulated drought (2% polyethylene glycol) and salt stress (200 mM NaCl) conditions. The axillary buds of the selected transgenic lines had a better bud break percentage under stressed conditions than buds from non-transgenic mulberry lines. A biotic assay with Bombyx mori indicated that osmotin protein had no undesirable effect on silkworm rearing and feeding. We therefore conclude that 35S transgenic plants are better suited for both abiotic stress also biotic challenges (fungal), while the rd29A transgenic plants are more responsive to drought.  相似文献   
94.
VPg linkage to the 5' ends of picornavirus RNAs requires production of VPg-pUpU. VPg-pUpU is templated by an RNA stem-loop (the cre or oriI) found at different locations in picornavirus genomes. At least one adaptive mutation is required for human rhinovirus type 14 (HRV-14) to use poliovirus type 3 (PV-3) or PV-1 oriI efficiently. One mutation changes Leu-94 of 3C to Pro; the other changes Asp-406 of 3Dpol to Asn. By using an in vitro VPg uridylylation system for HRV-14 that recapitulates biological phenotypes, we show that the 3C adaptive mutation functions at the level of 3C(D) and the 3D adaptive mutation functions at the level of 3Dpol. Pro-94 3C(D) has an expanded specificity and enhanced stability relative to wild-type 3C(D) that leads to production of more processive uridylylation complexes. PV-1/HRV-14 oriI chimeras reveal sequence specificity in 3C(D) recognition of oriI that resides in the upper stem. Asn-406 3Dpol is as active as wild-type 3Dpol in RNA-primed reactions but exhibits greater VPg uridylylation activity due to more efficient recruitment to and retention in the VPg uridylylation complex. Asn-406 3Dpol from PV-1 exhibits identical behavior. These studies suggest a two-step binding mechanism in the assembly of the 3C(D)-oriI complex that leads to unwinding of at least the upper stem of oriI and provide additional support for a direct interaction between the back of the thumb of 3Dpol and 3C that is required for 3Dpol recruitment to and retention in the uridylylation complex.  相似文献   
95.

Heat stress (HS) seriously affects crop growth, causing significant crop yield losses worldwide. The regulatory mechanisms controlling HS tolerance in plants are not well understood. Phytohormones are important molecules for coordinating myriad of phenomena related to plant growth and development. They are also essential endogenous signaling molecules that actively mediate numerous physiological responses under abiotic stress by triggering stress-responsive regulatory genes involved in plant growth. This review updates the central role of various phytohormones—indole acetic acid, gibberellic acid, abscisic acid, cytokinins, ethylene, salicylic acid, brassinosteroids, strigolactone, and jasmonic acid—in regulating the HS response so that plants can adapt to increasing temperature stress. We also reveal how these stress-responsive phytohormones switch on various regulatory gene(s) and genes encoding antioxidants and heat shock proteins (HSPs) to combat HS in various plant species.

  相似文献   
96.
97.
Single-nucleotide polymorphisms (SNPs)are molecular markers based on nucleotide variation and can be used for genotyping assays across populations and to track genomic inheritance. SNPs offer a comprehensive genotyping alternative to whole-genome sequencing for both agricultural and research purposes including molecular breeding and diagnostics, genome evolution and genetic diversity analyses, genetic mapping, and trait association studies. Here genomic SNPs were discovered between four cultivars of the important amphidiploid oilseed species Brassica napus and used to develop a B. napus Infinium? array containing 5,306 SNPs randomly dispersed across the genome. Assay success was high, with >94 % of these producing a reproducible, polymorphic genotype in the 1,070 samples screened. Although the assay was designed to B. napus, successful SNP amplification was achieved in the B. napus progenitor species, Brassica rapa and Brassica oleracea, and to a lesser extent in the related species Brassica nigra. Phylogenetic analysis was consistent with the expected relationships between B. napus individuals. This study presents an efficient custom SNP assay development pipeline in the complex polyploid Brassica genome and demonstrates the utility of the array for high-throughput genotyping in a number of related Brassica species. It also demonstrates the utility of this assay in genotyping resistance genes on chromosome A7, which segregate amongst the 1,070 samples.  相似文献   
98.
An Illumina Infinium array comprising 5306 single nucleotide polymorphism (SNP) markers was used to genotype 175 individuals of a doubled haploid population derived from a cross between Skipton and Ag‐Spectrum, two Australian cultivars of rapeseed (Brassica napus L.). A genetic linkage map based on 613 SNP and 228 non‐SNP (DArT, SSR, SRAP and candidate gene markers) covering 2514.8 cM was constructed and further utilized to identify loci associated with flowering time and resistance to blackleg, a disease caused by the fungus Leptosphaeria maculans. Comparison between genetic map positions of SNP markers and the sequenced Brassica rapa (A) and Brassica oleracea (C) genome scaffolds showed several genomic rearrangements in the B. napus genome. A major locus controlling resistance to L. maculans was identified at both seedling and adult plant stages on chromosome A07. QTL analyses revealed that up to 40.2% of genetic variation for flowering time was accounted for by loci having quantitative effects. Comparative mapping showed Arabidopsis and Brassica flowering genes such as Phytochrome A/D, Flowering Locus C and agamous‐Like MADS box gene AGL1 map within marker intervals associated with flowering time in a DH population from Skipton/Ag‐Spectrum. Genomic regions associated with flowering time and resistance to L. maculans had several SNP markers mapped within 10 cM. Our results suggest that SNP markers will be suitable for various applications such as trait introgression, comparative mapping and high‐resolution mapping of loci in B. napus.  相似文献   
99.

Background

The diagnosis of autism spectrum disorder (ASD) at the earliest age possible is important for initiating optimally effective intervention. In the United States the average age of diagnosis is 4 years. Identifying metabolic biomarker signatures of ASD from blood samples offers an opportunity for development of diagnostic tests for detection of ASD at an early age.

Objectives

To discover metabolic features present in plasma samples that can discriminate children with ASD from typically developing (TD) children. The ultimate goal is to identify and develop blood-based ASD biomarkers that can be validated in larger clinical trials and deployed to guide individualized therapy and treatment.

Methods

Blood plasma was obtained from children aged 4 to 6, 52 with ASD and 30 age-matched TD children. Samples were analyzed using 5 mass spectrometry-based methods designed to orthogonally measure a broad range of metabolites. Univariate, multivariate and machine learning methods were used to develop models to rank the importance of features that could distinguish ASD from TD.

Results

A set of 179 statistically significant features resulting from univariate analysis were used for multivariate modeling. Subsets of these features properly classified the ASD and TD samples in the 61-sample training set with average accuracies of 84% and 86%, and with a maximum accuracy of 81% in an independent 21-sample validation set.

Conclusions

This analysis of blood plasma metabolites resulted in the discovery of biomarkers that may be valuable in the diagnosis of young children with ASD. The results will form the basis for additional discovery and validation research for 1) determining biomarkers to develop diagnostic tests to detect ASD earlier and improve patient outcomes, 2) gaining new insight into the biochemical mechanisms of various subtypes of ASD 3) identifying biomolecular targets for new modes of therapy, and 4) providing the basis for individualized treatment recommendations.  相似文献   
100.
Heparin binding epidermal growth factor (HBEGF) is expressed in podocytes and was shown to play a role in glomerular physiology. MicroRNA binding sites on the 3'UTR of HBEGF were predicted using miRWalk algorithm and followed by DNA sequencing in 103 patients diagnosed with mild or severe glomerulopathy. A single nucleotide polymorphism, miRSNP C1936T (rs13385), was identified at the 3'UTR of HBEGF that corresponds to the second base of the hsa-miR-1207-5p seed region. When AB8/13 undifferentiated podocytes were transfected with miRNA mimics of hsa-miR-1207-5p, the HBEGF protein levels were reduced by about 50%. A DNA fragment containing the miRSNP allele-1936C was cloned into the pMIR-Report Luciferase vector and co-transfected with miRNA mimics of hsa-miR-1207-5p into AB8/13 podocytes. In agreement with western blot data, this resulted in reduced luciferase expression demonstrating the ability of hsa-miR-1207-5p to directly regulate HBEGF expression. On the contrary, in the presence of the miRSNP 1936T allele, this regulation was abolished. Collectively, these results demonstrate that variant 1936T of this miRSNP prevents hsa-miR-1207-5p from down-regulating HBEGF in podocytes. We hypothesized that this variant has a functional role as a genetic modifier. To this end, we showed that in a cohort of 78 patients diagnosed with CFHR5 nephropathy (also known as C3-glomerulopathy), inheritance of miRSNP 1936T allele was significantly increased in the group demonstrating progression to chronic renal failure on long follow-up. No similar association was detected in a cohort of patients with thin basement membrane nephropathy. This is the first report associating a miRSNP as genetic modifier to a monogenic renal disorder.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号